
DocOrigin Offline Documentation

DocOrigin Reference Manual
Version: 3.3.001.01

Release Date: October 7, 2022

Online Documentation

© 2007-2022 Eclipse Corporation WSL Inc. - All Rights Reserved

eclipsecorp.us

https://docs.docorigin.com/reference-manual
http://www.eclipsecorp.us

Table of Contents

Using DocOrigin ...2
Documentation ... 2

Getting Started .. 3

Proof-of-Life..3

Your first DocOrigin form design...3

Preview your design ..3

Terminology: Panes & Containers ...4

Scraping data off of reports ...4

License Keys .. 5

Evaluation Spoiler Stripe...5

License Key File ..5

Time-Limited Evaluation License ...5

Permanent License ..5

Maintenance and Support ..5

Product Release Issue Date ..5

No Need for New Keys Unless Upgrading ..6

Temporary Emergency Keys...6

Keep M&S Up-to-Date ...6

Multiple Outputs ... 7

One Output per Run..7

One Output Per Document...7

Different Output Formats ...7

Multiple Outputs per Doc ...9

Multiple Outputs per Doc 2 ..9

Usage...10

Output Configuration Names...10

Deprecated Config file confabulation ...11

Sending Mail .. 12

The Email From Address ...12

The Email Subject...13

The Email Attachment(s) ...13

The Email's Text-based Body..13

The Email's HTML-based Body ...14

Images in the Email HTML body...14

Summary...14

Debugging...14

Email Sending Verification ..15

Email Configuration ...15

rtf Support ... 16

Limitations ..17

Importing Rich Text Files...17

Barcodes .. 18

Overview...19
Platforms.. 19

Minimum Configuration Recommendation... 19

Merge Architecture... 20

A Classic Merge Command Line...20

FolderMonitor Architecture ... 21

Copyright Notices ... 22

Internationalization .. 23

Definitions...23

Considerations ...23

Configuration Editor..25
Configuration files .. 26

More Dynamic Configuration ...26

User Interface.. 27

The ConfigEditor Main Window ...27

Typeface Substitutions..30

Advanced Properties ...32

.prt Override ...35

Design..36
Design Tutorial .. 36

Form Files... 36

File-Print ... 37

Form File Import/Conversion .. 38

Import Prerequisites ...38

Batch Conversion...38

Conversion Effort Estimates ...40

Fragments.. 41

Libraries ..41

Adding Fragments..42

Fragment Resolution ...42

Fragments in Merge ..43

Design Images ... 44

PDF Page as an Image ...44

Image as Template ..44

Object Tags .. 46

Standard Tags...46

AutoEmail Message Text...46

Barcode Overrides...46

ellipsis..46

HTML Images as URL References ..46

PDF tags ..47

RadioButton and CheckBox Options...47

Direct Data Binding..47

RetainWhenBlank Tag ...49

Design Keyboard Shortcuts ... 50

Alt+Ctrl+N - Looking at the XML for an Individual Object ...50

Ctrl+Shift+E - Save Image ..50

Alt+X - Convert HEX Value to Unicode Symbol ...50

Ctrl+G - Manage Object Tags..50

ALT - Reuse Previous Object Tool ..51

ESC - Toggle Between Text and Object Edit ..51

Ctrl+Shift+A - Select All Objects in Pane..51

F5, F7, F8 - Preview...51

Ctrl - Line on a Diagonal..51

Data Explorer Options.. 52

Open Data File..52

Change Document Separator Tag... ..52

Select in Form...53

Allow for Dragging Tables ...53

Copy Data Path To Clipboard ...54

Form Explorer Options... 55

Table ..56

Link Objects into Pane...57

Expand All Panes..57

Collapse All Panes..58

Expand Children...58

Collapse Children...59

Copy Form Path To Clipboard ..60

TagAs ...60

FilterEditor..62
Subject Matter Expertise.. 62

Learning FE .. 63

Beginner's Tip...63

Sample XML File ...63

Show those Menu Items ...64

Filter Editor - 101..65

How does it work ...65

Defining a Rule ...65

Defining an Extraction...66

Review ...66

Rule order ...66

States...67

The *Start* state ..67

The *AnyState* state...67

The current line..67

Extractions ..68

Variable Length Extractions..68

Moving on ...68

Filling in the XML ..69

Non-extraction Actions ...69

Start New Document ...69

Extraction Steps ...69

The Lexicon...70

Sentinel detection..70

Ways into a State ...70

FilterEditor JavaScript ... 71

Custom Functions ..71

Now that you have defined your custom function, how do you use it?..71

What if you want to edit your script?...71

FilterEditor Functions ..72

FolderMonitor ..74
FM on Windows... 74

FM on Unix... 74

FolderMonitor Command Options ... 76

-concurrent ...77

-errorFolder ..78

-ExitNow..79

-ExitWhen..80

-FMScript ...81

-JPSName ..83

-pause..84

-processedFolder ...85

-quarantineTime ..86

-queue ...87

-script...88

-scriptFolder..90

-UpdateCounts ...91

Functional Overview ... 92

Multiple Monitors ... 93

On unix..93

On Windows... ..93

FM.ini ...94

FMTransaction..95

Installation ... 96

Testing a new install ..96

Queues ... 97

_job Script Object .. 98

Command Line Option Access ...98

Processing Instruction Access ..98

Job Name Discovery ... 99

The DocOrigin PI ..100

Direct-to-Merge PI..100

Processing the Job .. 101

Sample Processing Script:...101

Error Handling... 103

Quarantined Files...103

Merge ..104
Merge Command Options ... 105

-appendPages...106

-attachment ..107

-blend ..108

-config..109

-createData ...110

-data ..111

-documentTag ..112

-dumpLevel ...113

-dumpPath..114

-dumpTimes ...115

-duplex ..116

-ellipsis...117

-embeddedDefault ..118

-embedjpg...119

-embedPlainTextAsRtf...120

-emptyNodeInstantiatePane ..121

-filter ..122

-filterOutput..124

-filterParm...125

-form..126

-fragmentAutoResolve ..127

-HighlightURL..128

-htmTemplate...129

-imagePath..130

-inputDataType ..133

-inputDateFormat ..134

-inputTray..135

-language ..136

-lineBreak..137

-lj4BoundFont...138

-mergeCaseSensitive ...140

-mode ..141

-numCopies ..142

-output ..143

-outputBin...144

-paginate ...145

-paperType..146

-pdfCompress...147

-pdfScript ..148

-preferImages...149

-printInDocumentOrder..150

-prt option...151

-rtfParserVersion..154

-scriptFile...155

-scriptFolder (Merge Command Options) ...156

-scriptTools ...157

-showNames...158

-splitSegs ...159

-spoolerDocName..160

-stretchFields ..161

-symbolSet ..162

-testMail ..163

-textpresentation ...164

-translate...165

-trimData...166

-useBuiltinSS...167

-useFilterFormList ..168

-wininfo ...170

The Merge Algorithm.. 171

XML Data Files ... 173

XML Includes ..174

XML Attributes..174

Image data..176

PDF Page Images ...177

JSON Data Files.. 179

Combine the Form and Data... 181

Field Name Matching.. 182

Barcode Options ... 183

2D Barcodes ...184

AusPost Barcode..185

Barcode Bar Widths...186

Code 11 ...187

Code 25 ...188

Code 39 ...189

Code 128 ...190

DataMatrix ..192

EAN-13...193

Linear Barcodes ...194

MaxiCode ..195

PDF417 ..197

Pharmacode ...198

Pharmacode 2Track...199

PostNet..200

QR Code ..201

UPC ..202

USPS-IM...203

Zebra Internal Barcodes .. 204

Properties by Barcode Type ...207

Auto Translate ... 213

A Translate Example..213

Setting Field Values..215

Auto Email.. 217

How it Works ..217

Adding Auto Email to a Form..220

Designing DocOrigin Emails ...220

Images in Emails ..221

Testing Your HTML Email ..222

Beacons...222

Just the HTML Please...223

Global Fields .. 224

Auto/Embedded Fields... 225

Merge Licensing Info .. 228

Merge Version ..228

License Key Renewal ...229

Merge Output.. 230

The Basics ...230

Downloaded / Resident Fonts ..231

Output Filenames / Options ...234

Scripted Output Destinations...235

Multiple Output Streams ..236

Output to Another Program ...237

Merge Filters.. 238

Filter options...238

Standalone usage ..238

Executable (non-script) filters...239

ConvertDatToXml Filter...240

ConvertTxtToXml Filter..244

Dat2XML Filter ..245

DocumentSort ..246

JavaScript Filters ...248

DatToXml Filter (Script-based)..251

CsvToXml Filter (Script-based)..252

XMLAttrs Filter (script-based) ...253

Codepage Handling ...255

Multiple filters per run ..257

Merge External PDFs .. 258

What do you do to achieve external PDF integration? ..258

What Merge does...259

The DocOriginOverlay.wjs script..259

Multiple documents per Merge run ..259

Merge Scripting ... 261

Suggested Scripting Guidelines..261

Merge Events... 262

Hyperlinks .. 264

Fillable Forms .. 265

Single Output File...265

Templates ...265

HTML Script ..265

Input Fields ...266

Input Field Type..268

Fillable HTML Forms ..274

Fillable PDF Forms ...281

Pagination.. 286

Pagination Checkboxes ...287

Mandatory ..287

Allow Multiple...288

Allow Split ...288

Allow Break Before ..288

Allow Break After ...289

Allow Break Between...289

Force Page ..289

Layout in multiple columns ..290

Minimum Height ..290

Pagination Generalities ...291

Footers/Headers ..291

Processing Instructions.. 295

Profile Files .. 296

Profile File Format..296

Opening a Profile File ..296

[@Variant] ...300

Transparent Color Image Support.. 301

MultiMerge ...302
Html-Adaptive Processing.. 303

Html-Adaptive Template Files ... 304

MultiPart Output ... 305

MultiMerge Command Options .. 306

-action..307

-adaptiveTemplate...308

-mergeargs..309

MultiPage..310
Usage.. 310

MultiPage Command Options... 311

Notify...312
Purpose/Uses .. 313

Infrastructure .. 314

Configuring .. 315

Command Options - Notify.. 316

-context (Notify Command Option) ...317

-fileMask (Notify Command Option)..318

-themeColor (Notify Command Option) ...319

-waitTime (Notify Command Option) ..320

PCLExtract...321
Extracting Documents from a PCL.. 321

Other options .. 321

PDFExtract ..322
Combined PDFs... 323

Combining PDFs using PDFExtract ... 324

Extracting Documents from a PDF ... 325

Extracting Pages from a PDF ... 326

Selection by Bookmark .. 327

View Bookmarks ... 328

Command Options (PDFExtract) ... 329

-attach ...330

-docs ..331

-dumpIndex ..332

-dumpObjects...333

-in ...334

-multiSelect ...335

-onto ..336

-out ..337

-overlay..338

-pageCount ...339

-pages ..340

-quiet ...341

RunScript ..342
Syntax... 342

Parameters .. 342

Predefined Vars... 343

Command Options (RunScript) ... 344

-allowDJScript ...345

Runscript -script ...346

FormConvert ..347
Command Options (FormConvert) ... 348

-adjustLabelWidth..349

-config (FormConvert) ...350

-containerShift..351

-fieldCorrection ..352

-ics..353

-importFilter..354

-in (FormConvert)...355

-out (FormConvert) ..356

-retainSpaces..357

-saveXdp..358

-setConfig..359

-target..360

SendMail ...361
SendMail Configuration ... 363

Immediate or Queued...363

Creating but not Sending and Email (-hold) ...364

Post-Send Housekeeping..364

Parallel Connections..365

Option List ..365

Immediate or Queued...369

Creating but not Sending and Email (-hold) ...370

Post-Send Housekeeping..370

Parallel Connections..371

Option List ..371

Sendmail Verification ... 375

Signing and Encrypting mail .. 376

Email on Linux... 378

Updating cURL via yum ...380

Session - DocOrigin Inter-process Communication ...381
Session File Format... 381

Script access to Session data... 381

Merge Command Line Options... 381

Command Line Processing..383
Indirect Parameter Files (.prm files) ... 384

Conditional prm files ...384

Text Substitution..384

Default Parameter files .. 386

Order of Precedence .. 387

Invoking Command Line Apps .. 388

.prm Files ..388

Convenience Invocation..388

... On Windows ...388

... On Linux..390

Invoking RunScript...391

Common Command Line Options..393
-alert ... 394

Syntax..394

Description ...394

-alertLevel .. 395

Syntax..395

Description ...395

-alertMsg .. 396

Syntax..396

Description ...396

-alertSubject .. 397

Syntax..397

Description ...397

-alertTo... 398

Syntax..398

Description ...398

-cache ... 399

Syntax..399

Description ...399

-cd ... 400

Syntax..400

Description ...400

-clearLog... 401

Syntax..401

Description ...401

-debug .. 402

Description ...402

-fileMask... 403

Syntax..403

Description ...403

-include... 404

Syntax..404

Description ...404

-locale ... 405

Syntax..405

Description ...405

-logfile... 406

Syntax..406

Description ...406

Emergency log file..406

-logfileFormat .. 407

Syntax..407

Description ...407

-logSeverity .. 408

Syntax..408

Description ...408

-message.. 409

Syntax..409

Description ...409

-monitor ... 410

Syntax..410

Description ...410

-phase... 411

Syntax..411

Description ...411

-setSession... 412

Syntax..412

Description ...412

-themeColor... 413

Syntax..413

Description ...413

-trace .. 414

Syntax..414

Description ...414

-tracelevel .. 415

Syntax..415

Description ...415

Example ..415

-verbose ... 416

Syntax..416

Description ...416

-$X ... 417

Syntax..417

Description ...417

Scripting ..418
Script Functions... 418

Script Files.. 419

The Merge DOM.. 420

$Variables .. 421

Further, you can count on: ...421

As of 3.0.001.11... ...422

_metaData.. 423

How to get metadata...423

Script Functions... 425

Naming Conventions...425

_auto - automatic field values ..427

_cache - scripting object..428

_chart - draw barcharts and piecharts ..430

_data - Merge XML Data DOM..456

_document..459

_file - read/write files ...469

_fromBase64...488

_fromDOUnits ..489

_fromXmlString ..490

_inlineToRtf ...491

_job ..493

_locale..494

_logf ...500

_logfEx ...501

_merge...502

_mergeEmbedded..504

_message ..505

_odbc - database access..506

_os..514

_page ...515

_parser ..516

_printer - output configuration settings..528

_printf ..536

_profile ..538

_prompt...542

_resolve ...544

_run..545

_runNoWait...550

_runScript..551

_sendmail..552

_session - Accessing Session Data ...556

_sprintf ..557

_summary ...558

_system ...559

_toBase64 ...561

_toDOUnits ...563

_toXmlString ...564

_tracef..565

_xml ...566

XmlFile Class ...567

XmlInput Class..571

XMLHttpRequest - send/receive html pages ..577

DOM Functions ... 582

domObj.ancestor ...583

domObj.appendInstance ..584

domObj.childNamed ...586

domObj.bookmark ..587

domObj.clone...588

domObj.deleteObject ..589

domObj.descendant..590

domObj.DOM ...591

domObj.DOMValue..592

domObj.fillFromNextPage ..593

domObj.fillObject...595

domObj.getAllTags ..596

domObj.getObjectsByName...597

domObj.getObjectsByTag ...599

domObj.getObjectsByTagValue ...601

domObj.getObjectsByType...602

domObj.getPickedObjects ..604

domObj.insertPage..605

domObj.relayout..607

domObj.reparent ...608

domObj.setTag...609

domObj.getTag...611

domObj.sum...613

domObj.xhtmlToRtf ...614

DOM Properties Accessing the Document Structures ... 615

Examples...624

Debugging Script... 625

Techniques ...625

Colors ... 628

Setting Colors ...628

Pre-defined Colors...628

Script Units .. 630

Overrides ..631
Custom Design Script Menu .. 632

File Naming Conventions..634
Characters Restricted from File Names ... 634

% Placeholders in File Names.. 635

Folder Monitor Instance Name Substitution ..636

$X String Substitutions..637
Paths.prm .. 637

Test.prm... 637

External file include .. 639

Startup $'s.. 640

Special $'s... 642

$$F ...642

$$D ..642

$$X ...642

Glossary...643
Acronyms ... 645

Return Codes ..647
Filter program return codes .. 648

DocOriginSendMailServer return codes .. 649

Merge return codes .. 650

PDFExtract return codes .. 652

Folder Monitor return codes ... 653

Process spawning return codes .. 655

Scripting return codes.. 656

XFilter return codes .. 657

Reserved for unix.. 658

User return codes ... 659

Return codes on Unix... 660

Latest ReadMe..661

Web Services...662
Processing Details... 663

REST API ..663

SOAP API ...664

Job Internals ...664

Returned Results..665

Limitations ..667

The Default Script ..667

Direct Merge call ..668

Calling The WS..668

Prerequisites ... 670

Deployment ... 672

REST...673

SOAP..673

Configuration... 674

Logging... 675

Script security.. 676

DEMO Application... 677

REST...677

SOAP..677

Test ..677

page 1

https://docs.docorigin.com/reference-manual/files/44729121/65306676/3/1664866126447/DODocs.pdf

Using DocOrigin | Documentation

page 2

Using DocOrigin

Documentation
The documentation aims to cover off both technical reference material and also overall 'how to use' topics
that cut across the nitty-gritty technical information. This is in an attempt to describe how the facilities can
be used together to accomplish a commonly encountered goal.

These 'how to use DocOrigin' topics are all under this one Table Of Contents heading -- Using DocOrigin,
while the to-the-metal, reference material makes up the rest of the Table of Contents.

There are many, many topics to add to this documentation. We're just getting started.

E.g. Multiple Outputs, Multiple forms per run -- from more of a usage example perspective than how to run
CombineForms, multiple filters in one run, Summary Section, Design Pane checkboxes (dynamism with no
preamble), Panes within panes, Data Explorer, Embedding Fonts, How to create and use custom function
libraries, Value-based formatting, ...

Using DocOrigin | Getting Started

page 3

Getting Started
Ideally you have been directed to this page via the post-install notes that pop up once you've done the two
minute install of DocOrigin. So you've just completed an install – now what?

To make life easier on yourself, per the post install instructions, you should copy the DO.bat (or DO shell
script on unix), which is installed in the DO/Bin folder of your chosen installation location, to somewhere in
your path.

In the following, .../ means your chosen installation folder.

Proof-of-Life
Browse to the .../DO/Samples folder and double-click Sample_Invoice.bat . That will run the DocOrigin
Merge tool on a supplied sample form with some sample data and produce a PDF. There is life. If you wish,
try clicking on some other Sample_ * files in that .../DO/Samples folder.

Your first DocOrigin form design
Great, now if I only had a form... What you want to do is to run the DocOrigin Design tool. Browse to
the .../DO/Bin folder and double-click Design.exe . Or just use the DocOrigin Design icon on your
desktop.

Hit the New Form button at the far left of the toolbar. Ahh, a blank form. Now you will see a series of tool
icons at the right of that toolbar. Text, Field, Box, Line, Barcode, Image, Table, Group, Pane, and Container.
They have tooltips so they won't be hard to identify. Click on one of them, let go. Now, having selected the
tool, drag out an area on the "canvas" – the big center portion of the Design screen. Alright! Now you are
an expert.

If you like, you can read more about using Design in these online docs. See Design. On the other hand you
might just play around a bit.

One thing, when giving fields names, note that they must match the exact case as used in the data files.
XML is case sensitive. Therefore, so is DocOrigin.

Preview your design
After you've put a few things down on the design canvas, use the Tools-PDF Preview... menu item (or hit
F5). Let Design supply data for you – just hit Preview. There you go, you've created your first document.
I'm sure that if you explore the menus you will see how to add pages and align objects, even set a grid size,
and stick to it, as a professional would. Those property pages on the right hand side are easy enough to
follow. It's all familiar Windows-style UI.

No preamble
Note: If you are used to JetForm Output Designer, then here's some advice. Don't look for the preamble,
there isn't any. It just works.

Using DocOrigin | Getting Started

page 4

Terminology: Panes & Containers
This is "Getting Started", not in depth. You need a few words on DocOrigin terminology. DocOrigin believes
in dynamic forms. Most things are not rigidly placed on the page, rather the contents of a document flow
down the page and possibly overflow onto more pages as necessary. You can put objects directly on the
page but usually you put them in what we call "Panes". Other software has called those things subforms or
fragments or who knows, we call them Panes. They are, oh, panels, that run from the left side to right side.

The left side to the right side of what? Of something we call a "Container". That is simply a big rectangular
area that you draw out on the design canvas. Generally it covers pretty much the whole page, but leaves
some room around the edges for aesthetic purposes and/or to cover off the area that can't be printed on
by some printers. You may have noticed that when you clicked "New Form" you got a container, and a pane
within it, for free. There can be only one container per page.

You can define lots of panes within a container. When data is merged with the form design, panes will be
instantiated as necessary and they will flow down the container until if fills up. Then it moves on to another
page with its new container and the panes start flowing down that container. I'm sure you'll see the
Overflow Footers and Headers buttons.

The order in which you layout the panes is the order they will appear in a document. The area on the left of
the Design application is what we call the Form Explorer. It shows you the structure of your form. You can
move things around in there if you want to change the order of your panes, for example.

Scraping data off of reports
One other tip... If you have a spool file, an overlay file, call it what you will, ... a print image as produced by
some other application and you want to "scrape" data off of that for use with DocOrigin Merge, the tool
you are after is called FilterEditor , and of course there is documentation on that at: Filter Editor

That should be enough to get you started.

Using DocOrigin | License Keys

page 5

License Keys
DocOrigin is a licensed product. In order to have full use of the product you require a license.

Evaluation Spoiler Stripe
The primary usage of DocOrigin is to do document generation. If you have a copy of DocOrigin, but do not
have a valid license then the generated documents will all have a rather large "E v a l u a t i o n" stripe
across them. Once you have a license, that spoiler is not generated.

License Key File
The license is embodied in a key file (.xkey or .key) that you receive from the seller. It is placed next to the
Merge executable, i.e. in the .../DO/Bin folder of wherever you chose to install DocOrigin. Starting with
version 3.0.003.29 (early 2015) the key file formats changed somewhat and newer .key files began to be
used. The older .xkey files continue to work, but will gradually be phased out. There is no requirement to
switch to the newer format.

Time-Limited Evaluation License
It may be that you have requested and received an "Evaluation License" which means that it is time-limited
and that the Evaluation spoiler stripe will return after a certain amount of time.

Permanent License
If you have purchased a license, then your key file is 'forever'. You can run the version of the software that
you have installed forever. The spoiler stripe will never come back.

Maintenance and Support
However, Maintenance and Support (M&S) privileges are not forever. They must be paid for according to
your negotiated purchase agreement. M&S means that you can not only get support but that you can get
product version updates with fixes and new features. If you let your M&S expire then you no longer have
any entitlement to new product releases. The one you have will continue working but new releases would
show a spoiler stripe.

Product Release Issue Date
Product releases each have an 'issue date' embedded within them. You can download and install new
product versions whenever you wish. As long as the issue date of that product version precedes the expiry
date of your M&S agreement, you will be able to use that new software version and not encounter a spoiler
stripe. However, if you let your M&S agreement lapse but install a product release with a later issue date,
then you will get the spoiler stripe again, since you would not be entitled to product updates at that point
— having let your M&S agreement lapse.

Using DocOrigin | License Keys

page 6

A product release that is running in your shop today will continue to run without need of a new key file.
That is regardless of whether you let your M&S agreement lapse. If you do let it lapse then you won't be
able to use any new product versions (versions issued after the date that your M&S lapsed.)

No Need for New Keys Unless Upgrading
There is no requirement for you to get a new license key file every time (annually) you renew your M&S
agreement. You may need a new key file when you want to upgrade to a new product version. Whether you
need one or not depends on whether the issue date of the new product release is later than the M&S
expiry date encrypted in your current license key file. Assuming that your M&S is paid up-to-date there is
no further charge for getting an updated key file. In fact with versions since 3.0.003.22, if you have internet
connectivity, then you can get a key that reflects your latest M&S agreement expiry date simply by running:
DO Merge -renew

Of course, the M&S has had to have been paid, received, and recorded.

Temporary Emergency Keys
Facilities exist for you / your distributor to get temporary keys to tide one over across some emergency
situation. If your system does not have (is not permitted) internet access then contact your distributor for
keys (temporary and permanent).

Keep M&S Up-to-Date
DocOrigin is under constant development. New features come into being frequently. Fixes, as required, are
quite prompt. However, it is your choice as to when you wish to upgrade to a new release. That could be
frequently or very infrequently, it's your choice. Note that recovering from a lapsed M&S state, so as to gain
access to new features, is something you need to negotiate with your distributor. It could easily require
that a whole new license be purchased.

Using DocOrigin | Multiple Outputs

page 7

Multiple Outputs
In a single run of DocOrigin Merge one can produce multiple outputs. There is no restriction to creating
only a single file. The variety that is possible here seems quite endless.

One Output per Run
Let's take a simple case of producing PDF output. The -config option you give to Merge will reference a
PDF configuration file. Quite often, so often in fact that it is the default if no -config option is provided,
that configuration file will be Default-PDF.prt. Of course you may have customizations, typically with
additional fonts, and you might say -config MyCustom-PDF.prt. Whatever the case, you do nominate,
explicitly or implicitly, an output configuration file (a .prt file).

If your data stream contains only one document's worth of data, then yes you will get only one PDF file out.
If your data stream contains the data for many documents, typically each housed between <Document>, </
Document> bookends, then, for the Default-PDF.prt output configuration, you will still get only one output
PDF!

Why is that? Well, well, ... we agnonize over this long ago decision - the Default-PDF.prt stipulates

<CombineDocuments>Yes</CombineDocuments>

That means that the output for all of the documents will be combined into a single, very archive-like, PDF.
That's great, if that's what you want, and you very often do. You might ship that whole archive off to your
print shop, or indeed use it as an archive. It is very easy to use the PDFExtract tool to extract any
documents of particular interest.

One Output Per Document
But what if you want an individual PDF for each document's worth of data? Well, specify an overriding:

-PDFCombineDocuments No

in your invocation of Merge, or if you like, specify <CombineDocuments>No</CombineDocuments> in your
custom PDF .prt file.

Now we've got a bunch of files, one per document, coming out in a single run of Merge. That can be, and
often is, quite desirable. It's particularly desirable if you want to distribute those outputs in different ways!
You might use _sendmail() to email them, or you might direct them to individual web folders based on
client account information in the data stream. Good stuff.

Different Output Formats
Now that we're producing a different output (file?) for each document, who says they should all be the
same format, PDF in our example? Surely, I don't have to split up my data streams into one for PDF, one for
PCL, one for HTML, one for PS. Of course not. That would be crazy. We expect that you will want to cater to

Using DocOrigin | Multiple Outputs

page 8

your end users' communication preferences. Some will want paper, some email, some web postings, either
in PDF or HTML.

A simple case is that of PDF + paper (let's say PCL, as an example). To accomplish that in one run of
DocOrigin Merge, you simply specify a semi-colon separated list of output configuration files as your
-config option. For example:

-config Default-PDF.prt;Default-LJ4Color.prt

Now Merge is fully prepared to emit some outputs in PDF and some in PCL. You might look at the
document's data for the account's communication preference and choose to create PDF for one document,
but PCL for another. How do you do that?

The secret sauce is in the Ready-To-Print event. Here's something I coded recently in my SE Support role.

Naturally, I had included both an LJ4 and a PDF output configuration in my semi-colon separated -config
option.

We needn't worry how the _cache variables were set. There could be lots of ways, and one might well refer
directly to a DOM element like:

_document.header.commPref._value

or whatever your data stream holds. Naturally, you don't have to log out the values either, at least not after
you have finished debugging!

_logf("Print? %s", _cache.Print);1
_logf(" Pdf? %s", _cache.Pdf);2
_logf("Email? %s", _cache.Email);3
_printer.setActive(false, "LJ4");4
if (_cache.Print == "Yes") {5
 _printer.setActive(true, "LJ4");6
 printer.setOutputFile("$U/Output/\[NCLI\]/EXT\[NCLI\].pcl", "LJ4");7
}8
_printer.setActive(false, "PDF");9
if (_cache.Pdf == "Yes") {10
 _printer.setActive(true, "PDF");11
 printer.setOutputFile("$U/Output/\[NCLI\]/EXT\[NCLI\].pdf", "PDF");12
}13
if (_cache.Email == "Yes") {14
 _printer.setActive(true, "PDF");15
 printer.setOutputFile("$U/Output/\[NCLI\]/EXT\[NCLI\].pdf", "PDF");16
}17

Oh, <sigh>, we have always called these output configurations "drivers". I hate that. They are not
drivers in the sense of device drivers – you know those other things that give you so much grief,
and need constant updating! These are not them. These you set and forget. But the "drivers" word
is in my brain.

Using DocOrigin | Multiple Outputs

page 9

Output drivers can be active or inactive. If they are active, output will be produced. If they are not active,
output will not be produced. So the point of this code is to set one of these "drivers" active and the other
"inactive".

Line 4, initially says that we do not want PCL output for this document, but lines 5 and 6 say that if "print to
paper" is desired, we will make it active. Pretty simple.

Line 7 defines where I want the output to go. Naturally, as we are producing multiple outputs per run, we
can hardly specify a single hard-coded name! So really, what line 7 does is to set an output name template.
It references field names in square brackets causing dynamic text substitution to happen. It can reference
a whole pile of %x type date/time elements too. Look inside any .prt file for a list or see: File Naming
Conventions. And then there's script. You are in a scripting language. If for some astonishing reason the
above flexibility isn't enough, you can certainly script your way to the perfect output file name.

Note that whether PDF is wanted or email is wanted, I make the PDF driver active. After all, I intend to email
a PDF. It might be that if email is desired that I would direct the output to some staging area, then email it,
then delete it. Whereas if email wasn't desired, I might direct the output to some client web folder.

I think you can see that this bit of script is not rocket science. You are empowered to create outputs of
different formats in a single run.

Multiple Outputs per Doc
The above shows that you can create a different format output for each document's data. But more than
that you can create multiple outputs (of the same or different formats) for each single document.

You'll note in my code sample above that making PDF active does not mean that LJ4 must be inactive. Not
at all. It's quite fine to have multiple drivers active and have Merge emit multiple outputs for whichever
documents deserve to have them.

Multiple Outputs per Doc 2
So far, the notion of having multiple outputs per document has been for the purpose of creating different
format outputs. But what if I want to produce two PDFs say? Well, Merge can do that, or three, or ...

Try a -config statement like:

-config Default-PDF.prt;Default-PDF.prt

Yes, that's right, I used the same .prt file twice. What happens then is that Merge let's you refer to the first
one as, in this case, PDF, and the second one as PDF2, etcetera if there were more than two of the same
type.

It is critically important to know that as Merge produces each output it is NOT redoing the merge
of the data and the form design. That would take processing resources and it entails all sorts of
side effect risk. Even something as simple, but legally important, as the recorded time-of-printing
could differ. DocOrigin Merge does the data merge only once and does each output generation
from its internal Document DOM. All documents are created equal.

Using DocOrigin | Multiple Outputs

page 10

Now you could produce a PDF to be sent to the account's folder, and another to be sent to the
accountant's folder. Of course, you could do file copies too! A much more common usage is to have
one .prt have <CombineDocuments>Yes</CombineDocuments> and the other to have
<CombineDocuments>No</CombineDocuments>. That way you can produce the combined archive PDF and
individual mailable, postable PDFs at the same time. Now that's handy!

Of course this technique expands to multiple format outputs as well. Endless possibilities.

Usage
Most of the usage for multiple outputs is pretty obvious but perhaps a couple others are worth mentioning
explicitly.

You may very well want to switch between output destinations based on page count. That information is
definitely available to you in the Ready-to-Print event and so it is quite easy to direct small number of pages
documents to one paper handling destination and larger number of pages documents to a different paper
handling destination. Different paper folding devices and envelope stuffing machines can then be applied.
Savings are very possible in terms of postage and envelope costs.

The DocumentSort filter can be run seamlessly on the batch of data, sorting on any number of keys. This
operates very quickly and then... you can easily break up your outputs based on a change of "region" or
"branch" or some such thing. The "western region" can get all of its documents in one combined PDF while
the "southeast" and "mid-west" get their own set of documents. Of course you could be creating an
omnibus, all regions, output at the same time. It may make sense to sort on zip-code and achieve postage
rate savings that way.

It's so easy to overlook. A form design has a Main Section but it can also have a Summary Section. You can
design panes for that Summary Section as you see fit. Data that you collect throughout a batch can then be
presented as a Summary Section report. And of course, that Summary Section output might have a
different destination than what applied for the Main Section.

It might be that certain documents contain data values that are outside the norm or have larger-than-usual
dollar amounts. Perhaps you would direct those to a 'special attention' output location, and/or to a
watched folder that participated in a review workflow operation.

Output Configuration Names
Also known as "Printer Names".

In any .prt file there is a <Printer> section. They look like:

<Printer Name="XXX" Type="XXX">

Typically, those XXXs are the same, though they needn't be. When I coded

_printer.setActive(false, "LJ4");

the LJ4 was referring to a Name="LJ4" setting in one of the referenced .prt files. Naturally, if you reference
the same output configuration file multiple times, then that same name will occur multiple times. As said

Using DocOrigin | Multiple Outputs

page 11

before, when that occurs, Merge will automatically, name the second occurrence as XXX2, the third XXX3,
and so on.

Deprecated Config file confabulation
In the distant past, well over a month ago!, we used to say that to make multiple configurations available to
Merge you had to take out your text editor and copy the <Printer> section from one .prt and paste it into
another one. Ugh!

Don't do that anymore! Just use semi-colon separated lists of configuration files.

The extra-heavy downside to such manual text editing was/is that Configuration Editor will only ever let you
edit the first <Printer> section in a .prt file. And worse, if you did save the edited result, you would
completely lose all <Printer> sections but the first. Don't do that.

Using DocOrigin | Sending Mail

page 12

Sending Mail
Conceptually, it is pretty easy to understand the notion of using document generation to produce a
document and then using an email tool to send that output somewhere. Nothing magical there, also totally
unintegrated, requiring two tools to understand and peer into the data to figure out what to do.

Far more exciting is the ability to send mail from within a form. As the Multiple Outputs topic has shown,
DocOrigin Merge can produce all sorts of outputs and can specify where those outputs are to go. One of
those distribution mechanisms is "email".

The email addresses are surely in the same data stream as Merge has just processed, and therefore they
are in the Document DOM, easy pickings for use with the _sendmail() function. How does this happen?

The place for orchestrating the sending of mail is the End-of-Document event. You could use any object, but
the form object itself is likely the one whose End-of-Document event you should put the script into.
Sometimes folks use the email address field as the object to hang the script off of. Consider...

What's happening in that code? Well, really it's just setting up the arguments to a _sendmail() call, which it
then makes on line 11. See Sendmail and _sendmail.

Line 1 predicates the whole thing on whether we have an email address to send to. You may have other
criteria. You may even dynamically look up the email address based on some other customer account id, or
some such thing. The intent is pretty obvious though.

The Email From Address
A from address is required but is often set in the Sendmail Configuration .prm file. The address can be in
the format: "friendly address <actual address>" as you will often see on emails these decades. If you
provide only the actual address without it being enclosed in angle brackets, then the address will
automatically be suffixed with <actual address>, essentially a repeat.

if (_document.customer.email._value != "") {1
 var args = {};2
 args.to = _document.customer.email._value;3
 args.from = "CustomerRelations@mycompany.com";4
 args.subject = "Your statement: " + NCLI._value + NATR._value +
NSEQ._value;

5

 args.attach = _printer.getOutputFile("PDF");6
 args.text = "@$$F/PlainTextEmail.txt";7
 args.html = "@$$F/HtmlEmail.txt";8
 // args.cidfolder = "$$F";9
 // args.hold = "Y";10
 _sendmail(args);11
}12

Using DocOrigin | Sending Mail

page 13

The Email Subject
In line 5, you can come up with any subject line you like. You can be bland, or you can personalize it based
on the data at hand.

The Email Attachment(s)
Line 6 is pretty simple; you want to attach the PDF file that was just produced for this document. Dead
easy. Want more than one attachment? Perhaps, the information in the data "suggests" that you attach a
specific brochure. The args.attach value can be a semi-colon separated list of attachments. So, attach
away.

The Email's Text-based Body
Line 7 could be as simple as:

args.text = "This is your statement";

but that wouldn't be very communicative. You can formulate the text-based body of your email any way
you like. Clearly, you could build up a string that contained all sorts of information taken from the data
stream. This particular example says to get the text-based body of the email from a file
called PlainTextEmail.txt which resides in the same folder as the form design (that's what $$F means).

One way to come up with the text-based body for an email is to define a text label in the form and have it
include as many [square bracketed] field references as applicable. Then the code can be something
like: args.text = _document.emailstuff.bodytext._value;. That postulates a pane named emailstuff t
hat is marked invisible in the form design. It makes it easy to design a text-based body and see what it
looks like on the Design canvas. But scripting works too.

There's a clever combination that we owe to an SE. The label text field sets its value to [@$$F/
PlainTextTemplate.txt]. That template may include the usual [square bracketed] field references. The
cool thing here is that those contents get read into the text label and then Merge automatically does [field]
substitution. This makes it pretty easy for a non-form-designer to contribute to the overall effort. The
relevant department can not only contribute but take control of what the email message text will
say. No form design skills are required. When that department posts the latest version of the referenced
template file, all will flow nicely, with no forms department involvement required.

As of 3.1.001.01 much of this is more easily provided by the _email_ fragment introduced in that version to
facilitate sending email without using any script. See Auto Email.

Some versions of Microsoft Exchange do not have the wit to handle current style email addresses
that include the friendly name. If you have issues with your from address and are using Exchange,
then specify your from address as "<actual address>". When DocOrigin sees the '<' it will presume
that a friendly name has already been provided and so will not add any suffix. That lets Exchange
be happy.

Using DocOrigin | Sending Mail

page 14

The Email's HTML-based Body
Line 8 is really just more of the same. Just that here we are supplying the value for the HTML-based portion
of the email body. It is not a requirement to provide both textual body, and HTML-based body, but perhaps
it will offer a competitive advantage to do so. Again an external department can take on the effort, and gain
the control of defining what those vital contact points with the customer look like.

Images in the Email HTML body
Line 9 is commented out but it brings to mind a powerful feature related to the HTML-based body. The
html body can include embedded image references. These take the form of

Perhaps it would include a height and width specification too, your choice, normal HTML.

The DocOrigin _sendmail() function will detect such constructs and embed the nominated image, or images
into the mail package that is sent. And _sendmail() will inject the necessary plumbing to have that image
show up where it is supposed to. Likely the recipient will get an "Images are not shown below, click here to
show images" message in his email -- depending on his email client software. Normal operations; the
images are visible.

Where the cidFolder specification comes in is to tell _sendmail() where to look for images. Mind you, most
often the cidFolder specification would be housed inside the DocOriginSendMailServer.prm file. But that
choice is yours.

Summary
In sum, you can produce a very complete, and tailored e-mail message, and you can have external
departments take ownership of many of the details. Do recall that this is happening as the Merge run
proceeds, no separate after-the-fact process is involved.

If you do want to do after-the-fact-processing, then feel free to use RunScript and its ability to invoke
_sendmail() in the same way -- though it wouldn't have access to the Merge-created Document DOM since it
would be running as a separate process.

Debugging
Line 10, args.hold = "Y"; is strictly for debugging. With it you can force the DocOriginSendMailServer to
not send the message but to keep it in the "outbox". That way, you can examine the mail packet during
your development phase and see if all is well. The line would certainly be commented out in production.
This could be an across-the-board debug setting in DocOriginSendMailServer.prm or, as is shown here, it
may be that only certain messages are to be held up.

If you wish to send an email attaching a combined PDF, then that needs to be done at the End-of-
Job event (not End-of-Document) since the PDF will be open throughout the run, not being complete
until end-of-job.

Using DocOrigin | Sending Mail

page 15

Email Sending Verification
See Sendmail Verification.

Email Configuration
See Sendmail Configuration.

See Also

Auto Email

Using DocOrigin | rtf Support

page 16

rtf Support
We believe that support of rtf (Rich Text Format)is very important. But let's be clear that DocOrigin support
of rtf is limited. What is there is amazingly useful, covering off most things that a typical business form
needs. For the most part, it is used for Terms & Conditions text, which is usually fairly bland, requiring only
bolding, possibly italicization, and font size and typeface changes. The selected typeface must be included
in the current output configuration (.prt). DocOrigin supports all of that, but not a lot more.

We do support superscript, subscript, and basic underlining as well as color changes within the text
paragraph.

We do preserve tab characters and support a basic set of tabstops which happen to default to 1/2", so an
embedded tab will sort of work. If we encounter start of paragraph in the rtf we interpret that as leaving a
blank line and then starting at the left margin. If already at the start-of-line, the same except no blank line
is added.

That's all. DocOrigin is not a wordprocessor and doesn't profess to be one. We recognize only that rtf
that fits nicely into our existing business form text capabilities. See chapter below for more detailed list of
limitations.

The limited tab support often tricks people into believing we have support for rtf-defined lists. We do not.
Some SEs have worked out ways to accomplish this feat but it is not through direct usage of an rtf-defined
list.

As of 3.1.002.06, it's possible to enable parsing of paragraph formatting commands. See -rtfParserVersion.
Supported are per paragraph indentation, tab positions, alignment, space before/after.

DocOrigin Merge strives too, and seems to succeed in ignoring all of the rtf syntax that it doesn't
understand. But you would be well advised to keep your rtf to a much more reasonable subset. For
example, at worst, use Wordpad, not MS Word to edit your rtf. The bloat that is in MS Word is unbelievable.
This generally makes it impossible to find your actual text, or to do any debugging since the rtf string
lengths will be huge and unmanageable. KEEP IT SIMPLE.

DocOrigin supports rich text format directly in text objects through the use of the Common Properties Tab.
In addition, rich text formatting is retained from your clipboard when copied from other files such as PDFs,
Word documents, and other DocOrigin files. Lastly, external rich text files (RTF) can be directly imported
into a DocOrigin file (see chapter below).

Like all textual data fields, rtf text fields support square-bracketed references to field names, in the style
[fieldname]. But such a string cannot have any rtf syntax within it. Don't bold the field name in your rtf
editor, or make any such rich text changes. It must be literal. Your very best course of action is to open
your rtf in a plain text editor and verify that your [fieldName] reference is intact. Looking at your rtf in a

Note that it's a good idea to resave your rtf fragments in Wordpad before using it in DocOrigin.
This will significantly simplify the rtf structure and make it possible to parse with not sophisticated
rtf parsers.

Using DocOrigin | rtf Support

page 17

1.
2.

3.
4.
5.
6.
7.
8.
9.

10.
a.
b.
c.
d.
e.

1.
2.

plain text editor will be instructive and will surely lead you away from rtf editors that inject so much extra
syntax.

Limitations
The following features of rich text formatting are supported:

Color
Font | The available fonts are defined by the Printer Configuration File selected for the document as
well as the fonts installed and the DocOrigin Design Machine and Server.
Bold
Italic
Single Underline
Point Size
Strikethrough
Subscript
Superscript
Paragraph Formatting:

Line Spacing
Paragraph Space Before and After
Hanging Indent
First Line Indent
Tabs

Note: Paragraph formatting applies to the entire text object.

Rich text limitations:

No Tables
No Images

Importing Rich Text Files
When importing external rich text files into a text or field object, the paragraph formatting is defined in the
DocOrigin object, such as line spacing and tab stops. Therefore, if you want .25” tabs, define the Tab setting
in the DocOrigin object that the RTF is being imported into and simply insert a tab in the RTF file. The
syntax for importing the external RTF file is [@path/filename.rtf].

The auto-bullets and the auto-numbering feature is coming shortly. In the meantime, these features can be
accomplished using the desired character and hanging indents. Be sure they define the same value for the
Hanging Indent and Tab stop. Using the Character Map application is useful for capturing the desired
character(s).

See Also

-rtfParserVersion Merge External PDFs

Using DocOrigin | Barcodes

page 18

Barcodes
DocOrigin handles various barcodes. As for all things that are "printed", referring to your favourite .prt co
nfiguration file is a good course of action. Each of them contain quite a vast quantity of information in
comments.

That is where you will find which barcodes are supported for the selected configuration.

If you are using barcode type X then it is presumed that you know all about barcode type X. That is, that
you know what data is required by that barcode type. DocOrigin is not the source for specifications on
various barcode types. Often those specs are veritable scientific journals, very hard to follow, so you are
required to understand the barcode type that you are trying to use, most especially in terms of the data
that such a barcode type requires. Given the right data, DocOrigin will render it.

Knowledge of how to render the various supported barcode types is embedded in the DocOrigin software.
You need supply only the data. However, certain variations in barcode rendering are available, (it varies by
barcode type). You can see the default configured settings for those variations in the relevant .prt file. Do
check there first.

Whether it is barcodes, fonts, or layout style, most organizations desire, if not require, some
standardization across all of their documents. So generally, barcode configurations are defined once at a
site and never looked at again. These configurations are defined in the site's .prt files and used by
DocOrigin to do the applicable rendering. Those configuration options are meant to, and do, apply across
the board for all instances of the use of that barcode type, with that .prt, in all forms.

In some cases, organizations choose to vary a barcode's options. For example, they might choose to
include the text in one rendering, but choose to exclude it in another rendering. While this (not following a
site standard) is somewhat unusual, DocOrigin accommodates it through the designer's use of the setTag
function. See domObj.setTag (previously named setParm).

See the Merge Barcode Options for details on using various barcodes and their options.

Overview | Platforms

page 19

•

•
•
•

•
•
•
•

•
•
•
•

Overview
DocOrigin is a set of applications that format customer application data into professional quality
documents and forms. DocOrigin can create a wide range of documents, such as:

general business forms like invoices, shipping documents, packing slips
and purchase orders
government and institutional forms
customized banking and insurance statements and documents
Service Bureau document production

DocOrigin can generate printed output to a variety of printers, or create multi-page Adobe® PDF
documents with indexing and security features. Printer Drivers can be customized to meet the needs of
new models to adjust paper tray selection etc.

All of the DocOrigin applications run on the Microsoft® Windows® platform. Essentially all of the non-GUI
applications run on Linux-like OSes. Some, most notably DocOrigin Merge, also run on AIX (and IBM i/
PASE).

Platforms
DocOrigin is available for the following platforms

Windows 64-bit (this platform alone, includes the GUI tools; e.g. Design, FilterEditor, …)
Linux 64-bit, e.g. Red Hat, Ubuntu
AIX 64-bit
AIX/PASE for the IBM i

Minimum Configuration Recommendation
DocOrigin requires very little as a minimum if you simply wish to output documents occasionally, but we
presume you are part of an enterprise which produces millions of documents on a production basis. Still,
DocOrigin–s recommended minimum requirements are quite modest. In the context of an Intel, 64-bit
processing system:

Memory: 4GB (Ok); 8GB recommended
CPU: i5 or i7 class
Processors: quad core (for running multiple instances of FolderMonitor)
Disk: 7.2K rpm, (heavy duty usage – 15K rpm or SSD), keep 20GB free

Linux-like systems generally require somewhat less than Windows systems.

DocOrigin will run on much less, e.g. any modern $500 laptop, but the above is meant for production
purposes and can be readily scaled up as necessary for enterprises with demanding and/or high-volume
printing/output needs.

You will need Java 8 if you are going to use Merge External PDFs or DocOrigin WebService functionality.

Overview | Merge Architecture

page 20

Merge Architecture

A Classic Merge Command Line

DO merge -form $F/Sample_Invoice.xatw -data $F/Sample_Invoice.xml -output a.pdf

We're not suggesting you run Merge by madly typing such command lines in over and over, but that line
alone tells most Dev folks volumes about getting things done via Merge.

Overview | FolderMonitor Architecture

page 21

FolderMonitor Architecture

This is just one instance of FolderMonitor, you can have several of them operating completely
independently of each other.

The _merge() line in the abstracted Job Processing script is putting all of the power of Merge (see previous
architecture picture) at your fingertips.

One could easily view segments of the Job Processing script as steps in a straightforward workflow. Of
course one of those steps might be to communicate with your existing corporate workflow, your OMS, or
your source version control, or document repositories. You decide how much you wish to do where,
and integrate not duplicate, or just as bad, live as separate islands.

Overview | Copyright Notices

page 22

Copyright Notices
See COPYRIGHTS_and_DISCLAIMERS.txt file within your installation under DocOrigin\DO\Bin folder.

Overview | Internationalization

page 23

•

•

•

Internationalization
DocOrigin is designed to allow a wide range of language and country (locale) support. All text is handled as
multi-byte Unicode text. This allows use of virtually all standard left-to-right languages including Chinese,
Thai, and other Southeast Asian fonts. Design allows locale (language/country combinations) to be
specified at the form and individual text string level. Locale-specific word and character analysis routines
provide correct word-wrap and editing capability.
The following describes internationalization issues, including Unicode, and highlights those areas where
Merge meets the boundaries of its operating environment, printers, and so on.

Definitions

Term Definition

Internationalizat
ion

The engineering of software to support multiple languages and multiple countries
(locales), with consideration for areas such as language support (some sort of
Unicode characters), time, date and number formatting, and the ability to easily
localize (translate) maintain all components of the software.

Unicode An international standard for the assigning of character glyphs (symbols) to numeric
codes.

UTF-32 A comprehensive enumeration of fonts, where each character has a unique 32-bit
numeric code. Although very complete, UTF-32 is rarely used.

UTF-16 A 16-bit-per-character storage of text. In its simplest form, this format can store just
over 63,000 characters. (216 – 2048). This is more-or-less what is known as UCS 2.
The full UTF-16 format also includes a provision for more that 63,000 characters by
using a scheme of "surrogate pairs". Two 16-bit characters are used to encode a
single UTF-32 Unicode character. (The values in the range xD800-xDFFF are used,
which accounts for the missing 2048 codes mentioned above). The use of surrogate-
pairs (or just surrogates) is necessary to encode some east Asian languages
(Chinese).

Considerations
DocOrigin Design allows to enter any 16-bit Unicode character by typing in character HEX code and pressing
Alt+X. For example in text label type in "99aa" and then hit Alt+X.
DocOrigin applications use 16-bit UTF-16 to store all form text. Most code, including the text word-break logic,
will recognize surrogate pairs of characters and handle them correctly.
Merge uses TrueType fonts as a source of font metrics (character widths). This format is restricted to 65,535
characters, and cannot handle surrogates.

Overview | Internationalization

page 24

•

•
•

•

•
•

All file I/O in Merge reads and writes 16-bit characters. (The file I/O routines determine if a single-byte file has
been opened, and convert it on-the-fly.)
The error messages for Merge are stored in an XML file (16-bit) that can be translated for different locales.
PCL Printing — Merge supports only 8-bit PCL printers. Any Unicode character above 127 is mapped using a PCL
symbol set mapping which is sent to the printer. Any character that is available in the printer can be printed by
using its corresponding Unicode character in the data or form. Merge uses a combination of downloaded
TrueType fonts and symbol sets to display Unicode fonts (for example, Chinese).
PDF and Postscript Printing — the Merge implementation of PDF and Postscript relies on the Adobe list of
standard glyph names. PDF output will use glyphID encoding to display all other Unicode characters.
Script — The JavaScript language is able to handle 16-bit Unicode characters.
Merge includes scripting extensions for date, time, and currency conversions using the IBM ICU development
system.

Configuration Editor | Internationalization

page 25

Configuration Editor
DocOrigin Configuration Editor (aka ConfigEditor) is an interactive Windows application that assists in
editing and customizing printer configuration files (.prt) which define fonts, printer options and various
default features that are shared by a number of forms. Design uses this information to provide the form
designer with the appropriate features that may be incorporated into the form, for example, the available
fonts. Merge also uses this information to enable and guide certain output generation features.

DocOrigin Configuration Editor, like all DocOrigin GUI apps, is supported on Windows 64-bit only.

Configuration Editor | Configuration files

page 26

•

•

•

•
•

Configuration files
Design and Merge use the printer configuration files (.prt) to get information about the fonts, printer
options, and other features that are common to a number of forms. In Design, the configuration file allows
the form designer to incorporate the specified features into the form, for example, the available fonts, and
check box and radio button shape and size. Merge uses the configuration file to determine the settings for
print and PDF generation.

Configuration files define the following:

Fonts. For the fonts to be available to a form to Design, they must be explicitly identified in the configuration file.
Merge must be able to extract font metrics (character widths) from the font files. The configuration file also
contains specifics for embedding fonts in PDF files. As well, it is possible to specify which fonts will be treated as
always available on the particular output device or in PDF, and which must be downloaded or embedded into
the document.
Paper/page size. Specifics of the available page sizes (Letter, Legal, A4, and so on) and the margins for the
unprintable area, which are specific to the printer, and cannot be changed. This information enables Merge to
accurately position the form on a printed page.
Printer paper handling options. These include duplex printing, input trays, output trays, and paper types. For
direct PCL and Postscript printer drivers, these options allow wider control over paper handling than normal
Windows printing.
Checkbox and radio button options. Specifics for checkbox and radio button size and appearance.
Individual or combined output files. Specifics that determine whether multiple data sets create individual
output files or a single combined file.

Several default configuration files accompany DocOrigin. These configuration files are distinguished by a
file name that includes the prefix Default- , as in Default-PDF.prt. The files are locked (read-only) when
installed. They may be used as a template for creating one or more configuration files customized for an
organization's requirements; any changes must be saved under a different file name. This ensures that the
original, unaltered configuration files can always be used for testing or troubleshooting. Do not give your
custom files a Default- prefix.

More Dynamic Configuration
Settings put in these output configuration files are expected to apply across the board for all forms that
reference them as their output configuration. That's great about 99% of the time, but there are some times
when the value(s) supplied in the output configuration file might want to be overridden. The prime,
perhaps only, example of this is with respect to barcodes. While you can specify one standard setting in the
output configuration file, e.g. for whether to show the text associated with the barcode or not, perhaps
some forms, or even just some instances of that barcode type on a form, need to go against the standard
and have a different setting. This can be done dynamically in the script inside the form. See
domObj.setTag for how to do that. (Rarely used.)

Configuration Editor | User Interface

page 27

1.
2.

3.
4.

User Interface
DocOrigin ConfigEditor provides a Microsoft Windows user interface that lets you create or modify the
configuration files for printers or PDF.

The ConfigEditor Main Window

For a new configuration, defaults to the selected printer name, which may be changed.
To select a font for availability in Design and Merge, check the box.

To indicate whether a font's resident in the printer (), right-click on the font name and click
Printer Resident Font.
For a configuration, defaults to the selected printer name.
To select an entry, check the box.
To review or modify an entry, double-click the entry, OR click the entry, and click the appropriate
Format menu command.
To add a new entry, click the appropriate Insert menu command.

Configuration Editor | User Interface

page 28

5. Enter the appropriate values, and check the applicable options.

Setting Description

Windows printer
name

Name of a Windows printer driver resident on the computer, populated when a
new configuration file is created.
To create a configuration file for a Windows printer driver, click File - New. In the
Print dialog, select the appropriate printer, and click OK to populate the Windows
printer name. ConfigEditor queries the driver for many of the available values,
such as available and/or resident True Type fonts. These values will be used to
populate the ConfigEditor user interface.

Configuration file
title

Descriptive name for the configuration file.

Fonts List of all Windows fonts currently installed on the computer. Fonts for use in
Design and Merge must be explicitly selected.
Fonts can be flagged as "printer resident", which indicates to Merge that the font
is available from the printer; therefore, it does not have to be downloaded to the
printer or embedded in a PDF file. To select or clear the setting, right-click on the
font name and click "Printer Resident Font". When the setting is selected, a
printer symbol appears between the check box and font name.

Paper Sizes Available paper sizes.
Settings:
ID is an internal code that tells Merge how to request this page size in the printer.
Width and Height are the full page paper size; typically, these are not changed.
In most cases, the settings are fixed for each unique ID value.
Margins specify the non-printable area of the page. Modify the top-left position
to move the printed image on the printed page. The top and bottom margins will
affect how the Merge pagination logic will split overflowing pages.
Printer request sequence, when specified, will override the default paper/page
select sequence that is sent to the printer. The default PCL escape sequence is:
\033&1%dA in which %d is replaced by the assigned paper size ID. For standard
paper sizes, the automatically supplied IDs correspond to the paper size needed
in this PCL request sequence. For custom paper sizes, in PCL, the escape
sequence should be \033&l101A, since 101 is PCL for "Custom Page Size". Your
printer may support other built-in page sizes with assigned IDs. If so, you should
use that ID for its paper size definition.

Configuration Editor | User Interface

page 29

Setting Description

Output Bins Used for printers with multiple output bin selections. This setting is not used by
the PDF driver.
Settings:
ID is a unique integer, less than 1000.
Display name is the output bin name that appears in Design.
Printer request sequence, when specified, will override the default select
sequence that is sent to the printer. For PCL, the standard output bin selection
sequence is \033&l%dG where %d is replaced by the associated output bin ID.

Input Trays Printer paper trays from which the paper will feed the printer.
Settings:
ID must be a unique integer, less than 1000.
Display name is the input tray name that appears in Design.
Printer request sequence, when specified, will override the default select
sequence that is sent to the printer. For PCL, the standard input tray selection
sequence is \033&l%dH where %d is replaced by the associated tray ID.

Paper Types Weights and types of paper that the printer will handle.
For PCL, the standard printer request sequence is \033&n%dWd%s where %s is the
name of the paper type, e.g. Bond, Plain, ..., and the %d is the length of that name
plus one.

PrinterID A unique name for this configuration file. This is the printer name that must be
specified in the _printer script functions of Merge.

Print Driver Type of driver; select the appropriate value from the drop-list.

DPI Applies to printer output only. Specifies the dots-per-inch resolution of the
printer. Note that increasing the resolution will increase the amount of data for
raster images that is sent to the printer.

Duplex Indicates whether the device can print on both sides of a page. When checked,
enables the form designer to specify duplex printing in Design.

Color Applies to printer output only. Indicates whether the printer can handle color
printing. When not checked, Merge will convert full color images to monochrome
prior for printing.

Configuration Editor | User Interface

page 30

Setting Description

Combine
Documents

Merge is capable of processing multiple sets of data and forms in a single run.
When checked, the resulting output will be combined into one large multi-
document file or print job; when not checked, the output will be broken into
individual documents.
When this setting is not checked and Merge will produce multiple documents to
disk files, set the OverwriteFile property to "N" (No). This ensures that each
document is written to a separate disk file (an integer sequence number is
appended until a unique name is constructed). Click Format - Advanced
Properties to set the OverwriteFile property.

Output Location Default location where Merge will write the document to be output. This name is
a "template". It can have many dynamic substitution elements in it. See File
Naming Conventions.

Typeface Substitutions
There may be circumstances where a shared form may require one or more fonts that are not available
either on a user's computer or on the target printer. The Typeface Substitutions command in the Format
menu enables you to create a list of substitutions that Merge will use in these situations.

Initially, no substitutions are defined.

PCL Printer request sequences: It's really best to have printer-specific information if you are
doing anything out of the ordinary. Hopefully, such manuals will advise you of the needed request
sequences. As a good start, Google "pcl technical reference manual", and that should suffice
for most things. Custom Page size setting seems particularly problematic. Check with your printer!
A good try would be to compute your page size in decipoints (inches x 72 x 10). Then use \033&fww
wihhhJ\033&l101A. The &f sets the page size (at least on some printers), and the &l101 says it is a
custom page size. So even if you had chosen a page size ID of 427, you would still use &l101. The
standard page size printer request sequences are handled automatically.

Configuration Editor | User Interface

page 31

To add an entry, click Insert or right-mouse click in the dialog and click Insert new Mapping...

Enter the Original typeface and substitution typeface name.

The added entries are added to the list, three typeface substitutions are shown in the sample below.

Configuration Editor | User Interface

page 32

To delete a substitution, click on the substitution typeface and click Delete.

To delete a typeface and all of its substitutions, click on the substitution typeface and click Delete.

Any number of substitutions may be associated with a typeface, by clicking on the appropriate typeface
and adding an entry. Each substitution is placed at the bottom of the list for the typeface. In the event that
a substitution typeface is required, the order of precedence is the list order.

Advanced Properties
The Advanced Properties command on the Format menu allows changes to some additional configuration
file settings. These settings will rarely require modification.

Note that not all of the following properties are available for every printer ConfigEditor displays only those
that are relevant for the current device.

Configuration Editor | User Interface

page 33

Category Property and Description

2 of 5 Barcode Barcode25AddCheckSum indicates whether to automatically add a checksum digit
at the end of the barcode.
Value: Y or N
Barcode25Ratio is the ratio of wide to narrow bars.
Value: An integer
Barcode25Text indicates whether to display human-readable text below the
barcode.
Value: Y or N

3 of 9 Barcode Barcode39Text indicates whether to display human-readable text below the
barcode.
Value: Y or N
Barcode39Ratio is the ratio of wide to narrow bars. Default is 3.
Value: An integer

Bolding SynthBold is the degree of artificial bolding used when bold versions of fonts are
defined but are not available in an actual bold font. Merge can bold a regular font
by "thickening" the letter in its print drivers.

Check Box CheckboxShape is the shape of all check boxes on the form.
Value: Circle, Square or None
CheckboxSize is the size of the check box, in inches.
When set to zero or left blank, the size of the check box is the font size specified for
the field in Design.
Value: A number
CheckboxStyle is the appearance of the check box for each state (checked or
unchecked).
Value:
Fill - sets a solid color when checked, and empty when unchecked Check - sets a
checkmark when checked, and empty when unchecked
xy - a string of 2 characters sets the check box to the first character when checked,
and to the second character when unchecked. When only 1 character is specified,
set the check box to the character when checked, empty when unchecked.

Font Embedding EmbedFonts indicates whether a non-printer resident font encountered in the
document should be downloaded to a printer or embedded in a PDF.
Value: Y or N

Configuration Editor | User Interface

page 34

Category Property and Description

Overwrite File OverwriteFile indicates whether an output file created by Merge (PDF or printing
to a file) will be overwritten when a file of the specified name already exists.
Value: Y or N
When set to "N", the file will be made unique by appending a number to the end of
the file name. For example, when "N" is specified, and a file named "myfile.pdf"
already exists, Merge will try "myfile_1.pdf", "myfile_2.pdf" and so on, until it finds a
file name that doesn't already exist.

PDF Bookmark Bookmark indicates whether to generate bookmarks in PDF files. Applies only to
documents output to PDF files.
Value: Y or N

PDF Viewer
Preferences

ViewPreferences specifies PDF viewer settings as per the "Interactive Features"
section of the PDF Reference manual, version 1.7 which is available online from
Adobe (www.adobe.com) or AIIM (www.aiim.org).

QR Code Barcode QRCodeCharacterSet is the default character set encoding for QR Code barcodes.
Value: Alphanumeric, Numeric, 8Bit or Kanji
QRCodeLevel is the default QR Code error correction level. See the QR Code
documentation for details.
Value: L, M, H or Q
QRCodeMode is the default QR Code character mode. See the QR Code
documentation for details.

Radio Button RadioButtonShape is the shape of all radio buttons on the form.
Value: Circle or Square
RadioButtonSize is the size of the radio button box, in inches. If set to zero or left
blank, the size of the radio button is set to the font size specified for the field in
Design.
Value: A number
RadioButtonStyle is the appearance of the radio button for each state (selected or
not selected).
Value:
Fill - sets a solid color when selected, and empty when not selected Check - sets a
checkmark when selected, and empty when not selected
xy - a string of 2 characters sets the radio button to the first character when
selected, and to the second character when not selected. When only 1 character is
specified, set the radio button to the character when selected, empty when not
selected.

http://www.adobe.com/
http://www.adobe.com/
http://www.aiim.org

Configuration Editor | User Interface

page 35

Category Property and Description

Word-wrap Text SplitWord is the action to take when a text string (from a label or field) with word-
wrapping cannot fit on the line even when split at normal word-break positions.
Value:
Y - specifies the word will be split, or
N - specifies the word will be allowed to overflow to the right

.prt Override
Merge uses a series of command-line options to customize and control its operation. Several of these
command-line options will override the equivalent setting in the printer configuration file. For a list of these
particular command-line options, see Merge Command Options, Printer Options.

Design | Design Tutorial

page 36

•
•

•

•

Design
DocOrigin Design is an interactive Windows application with specialized tools for drawing forms. The forms
created by Design are used by Merge to create output documents.

Design Tutorial
The original detailed Design tutorial can be downloaded here:

Original Fundamentals of DODesign.pdf

Form Files
Using Design, a form designer can create forms that range from simple one-page static (fixed) forms to
dynamic forms that can span multiple pages with many sections, or repeating detail lines that can span
multiple pages depending on the data.

Forms define:

the fixed or static objects of a document, such as titles, logos, lines, boxes and so on
the location and formatting characteristics of variable data fields, that correspond with the values in the user-
supplied data
JavaScript (Mozilla® ECMA262) scripts that are executed when Merge processes a job. The scripts can be used to
modify the data content or the form appearance when Merge is run.
the checkmark-based logic by which multi-page, dynamic, documents are created, such as where page breaks
can occur, repeated header or footer information, and so on.

Form files use a file extension of .xatw .

DocOrigin Design, like all DocOrigin GUI apps, is supported on Windows 64-bit only.

DocOrigin Design User Guide Available with a Login for All DocOrigin Customers

A more extensive Design User Guide is available to all current DocOrigin Users. The material
contains step-by-step instructions, feature samples, troubleshooting tips, accompanying collateral,
and more. You require a User Name and Password to access the material, which can be obtained
by emailing our support team at support@eclipsecorp.us.

https://docs.docorigin.com/reference-manual/files/44729146/63733885/1/1664485638000/Original+Fundamentals+of+DODesign.pdf
https://docs.docorigin.com/design
mailto:support@eclipsecorp.us

Design | File-Print

page 37

File-Print
Like most Windows applications, Design sports a File-Print operation and has the standard Print icon on its
toolbar. But it's not really a normal print operation.

Virtually always, when you want to see how your form design is coming along you will do a Tools-PDF
Preview..., Tools-HTML Preview..., or Tools-Merge Test... operation. File-Print is almost never used.

What File-Print does is to use "Windows drivers", as in Default-WIN.prt , to print out a blank document. It
does not matter which printer configuration is defined for the form design, the Default-WIN.prt
configuration file will be used for File-Print.

So it is not emitting PCL or PS2, or PDF, but is rather making Windows GDI calls suitable for devices known
to the Windows system for which there are device drivers from the device's vendor. Adobe PDF is often
another output choice that can be made. Just as Microsoft Word, or any app, can output to the Adobe PDF
pseudo device, DocOrigin's GDI calls can be directed to the Adobe PDF driver to create a PDF.

But this is not really a data merge operation. File-Print prints a blank form.

The other interesting fact is that for File-Print, Design makes it as if every pane and every table row were
mandatory, occurring once. Hence the File-Print operation produces a blank form with every pane and
table row in it. This could be useful for form design documentation. For simple static forms, a File-Print
result could be used for simply printing a form, e.g. for "print-then-fill" operations.

It's likely that you want to use Tools-Preview PDF and specify an applicable test data file, but File-Print can
be used for a blank form using Windows drivers technology.

Design | Form File Import/Conversion

page 38

Form File Import/Conversion
DocOrigin is often used as a replacement for Adobe® LiveCycle™ Output, which is also referred to,
correctly or incorrectly, as Adobe® or JetForm Central. While DocOrigin uses an open architecture with
easily readable files, those other products use a proprietary binary file format.

DocOrigin Design's File > Open menu item allows you to select *.XATW files (of course), but also *.IFD
(Adobe® Output Designer), *.XDP (Adobe® LiveCycle Designer), and *.PDF files. In the non-XATW cases, the
"open" is actually an "import" in that the nominated form design file is instantly converted to an XATW as
part of the file open process.

Import Prerequisites
The conversion process is available on Windows only.

IFD and PDF: Require that the user have a licensed copy of Adobe LiveCycle Designer, which is available
from Adobe for a modest price. It also was included in Adobe Acrobat Professional versions 8.1, 9, and X.
You may have it already. The Adobe LiveCycle Designer contains utilities that convert IFD files to XDP
format, and PDF files to XDP format. As the XDP file format is textual XML, such files are read directly by
DocOrigin during its conversion process. You don't have to learn/use the LiveCycle Designer program.
DocOrigin uses the needed utility silently, behind the scenes.

If you have installed Adobe LiveCycle Designer in the usual location, i.e. under C:\Program Files (x86)* ,
DocOrigin will find the needed utilities automatically. If you have installed it in some unusual location you
will need to change the following registry settings to point to the actual location of the utilities.

HKCU\Software\OF Software\DocOrigin\Design\FileLocations\ConvertIFDShell
HKCU\Software\OF Software\DocOrigin\Design\FileLocations\FileLocations\ConvertPDF

(prior to 3.2.001.02:
HKCU\Software\OF Software\DocOrigin Design\3.1\Design\FileLocations\ConvertIFDShell
HKCU\Software\OF Software\DocOrigin Design\3.1\Design\FileLocations\ConvertPDF)

*It might be under D:\Program Files (x86) -- wherever Windows tells us the "special" Program Files
(x86) folder is.

The above registry locations are used by Design. For the FormConvert non-GUI application (see Batch
Conversion below) you can define the locations of the from-Adobe tools via the following environment
variables: DO_IFD_CONVERT and DO_PDF_CONVERT.

Batch Conversion
DocOrigin supplies a non-GUI program called "FormConvert" which can be used to convert any of the
above format files to XATW format. The same prerequisites apply for batch conversion as for conversion
using DocOrigin Design.

Design | Form File Import/Conversion

page 39

1.

2.

3.

a.

b.

c.
4.

Bumps in the Road
If you encounter errors during the conversion process, e.g. #5907, #5903, #1084, or 50463490, these are
not DocOrigin errors but rather errors from the underlying Adobe tooling that we referred to above. If such
a thing should occur, your installation of the Adobe products is probably not correct. We suggest that you:

Prove to yourself that you can open the IFD directly in Adobe Output Designer, and most preferably
prove that you can compile it for a PDF presentment target. If you can't open it in Output Designer
there seems little chance that Adobe LiveCycle Designer will be able to do its import operation. If you
really can't open it in Adobe Output Designer, the best idea is to reinstall that product. Failing that
please contact Adobe.
Prove to yourself that you can open the IFD with your installed Adobe LiveCycle Designer, whether
that is from a standalone purchase, or from an install of Acrobat Professional 8.1, 9, or X. If you
cannot open the IFD in Adobe LiveCycle Designer, then it is possibly because you have Adobe Output
Designer installed under other than x:\Program Files (x86). Correct that. If that is not the case
then, <sigh> re-install Adobe LiveCycle Designer. If the reinstall fails to help, please contact Adobe. If
Adobe LiveCycle Designer cannot open the IFD then there is little hope for DocOrigin to open it since
it relies on that Adobe tooling.
You could locate/verify that ConvertIFDShell.exe exists somewhere on your system, likely under
your Program Files (x86) folder. If you can't find that you really must find and reinstall the Adobe
software. If you do find it, you could attempt to do the conversion after you manually set the registry
entries mentioned above to the location of where you found the .exe. This is somewhat grasping at
straws since

above should have worked. Please don't leap to the idea that only that one executable is
needed. It must be surrounded by all the usual Adobe Output Designer files, configuration
and whatnot. Those configuration files must certainly match those that you have been using
in production.
above applies to opening a PDF as well – except that there is no connection to Adobe Output
Designer. And
(desperation) applies except look for ConvertPDF.exe.

No, you cannot get an IFD out of an MDF. You must have an IFD for any form worth converting.

DO_SAVE_XDP
IFD and PDF files are not human-readable. They are "binary". The Adobe tooling does the much-
appreciated task of producing an XML, human-readable (well, it's no literary thriller!), XDP file. It is that XDP
file that DocOrigin reads and interprets. It can sometimes be handy, at least for SEs, to look at that
intermediate XDP output that is used behind the scenes. By setting the environment variable
DO_SAVE_XDP to some known file name, e.g. C:\Temp\LastConversion.xdp, you can always look at the
latest intermediate XDP file as created by the Adobe tooling for importing a PDF or IFD.

Stepwise Conversion (optional)
DocOrigin uses background tooling from Adobe to get an XDP file and then reads that XDP file. If you wish,
you could use Adobe LiveCycle Designer to import the IFD or PDF and save the XDP explicitly, completely

Design | Form File Import/Conversion

page 40

separate from any DocOrigin involvement. Then you could have DocOrigin open (import) that XDP as a
separate independent step.

Why mention that? Well, the Adobe tooling is not perfectly in sync. You may get slightly different results
from using Adobe LiveCycle Designer itself versus from using the Adobe ConvertIFDShell, or ConvertPDF
tooling. DocOrigin has no control over that. Converting your form designs from a binary, proprietary,
format to an open, textual, format is precious, so having any alternative avenues is worth knowing about.

Conversion Effort Estimates
Ok, how long is a piece of string?

This is impossible to say. The actual import operation is mere seconds. But the results may need
modification. Mostly it depends on whether the designer used only standard preamble or developed
'interesting' custom preamble. Also, the structure (or lack thereof) of the data can play a significant role in
the conversion effort. If there is no natural correlation between the data structure (and even field names)
with the structure and names used in the form design, then the effort will be greater. If the subforms are in
a random jumbled order rather than a logical top-down sequence, another small effort will be required to
shuffle the order of the panes into sensibility.

Most often, the bigger effort is simply to round up all of the needed collateral: the form designs, the
relevant production configuration files, the images, sufficiently base-covering sample data (single page,
multi-page, multi-documents), and corresponding expected outputs.

For conversion directly from PDF, the utility used will break up text strings any time there is a change in
font (typeface, point size, plain/bold/italic). This then is what we have to work with. You may well wish to
apply Design's Format-Combine Multiple Text Labels menu item.

Do also consider data conversion – of course, ConvertDatToXml Filter is handy in that regard.

Design | Fragments

page 41

Fragments
(new in version 3.1 - May 2016)

DocOrigin Design and Merge provide a means to create a library of pre-defined form objects that can be
placed on a form template. These library objects are called Fragments. A fragment is any DocOrigin
template object - a Field, Text Label, Table, Group, Pane, Page - that can be drawn in Design. Fragments are
typically created with a preset set of attributes and settings.

In the simplest use of fragments, you select a fragment from one of the libraries and place it on the page.
This is an embedded fragment. It just becomes a normal part of your design. It can be edited, moved,
modified just as if you had drawn it all yourself. This is more-or-less the equivalent of doing a copy/paste
from one form to another.

A second option called Linked Fragments also exists. A Linked fragment is a "read-only" instance of a
library fragment. You can position a linked fragment, and give it a new name, but you cannot modify any of
its other attributes. Those other attributes are linked to the original library, and only change when the
library is changed.

Whenever a template with a linked object is re-loaded in Design, it is automatically updated to the latest
version of that fragment in the library. So an update to the original library will automatically be reflected in
any template that links to it. A similar mechanism is also available (as an option) in the Merge program
(see below). This allows library changes to be reflected automatically in the runtime Merge output.

Libraries
Fragment Libraries are essentially normal DocOrigin form files stored in a designated Library folder, but
with a file extension of .xatwlib. You can create them and modify them with Design in exactly the same
way you work with other designs.

The DocOrigin install comes with some standard fragment libraries which are located in the DocOrigin/DO/
Library subfolder. These libraries typically have "Default-" at the front of their name - such as "Default-
Zebra.xatwlib" and "Default-Fragments.xatwlib". The Default-Zebra library has a number of barcode
formats for Zebra label printer. The Default-Fragments library includes a template for the Auto Email
feature of Merge - see Auto Email.

Note that although the above automatic updates to existing templates by Merge may be a
powerful way to make system-wide changes to forms, it should always be used with caution.
Proper testing and QA of the changes to production forms is very important. Changes to library
fragments can cause unexpected effects. Text labels that originally display correctly might now
overflow or overlap other design elements. Font changes may require changes to Merge
configurations.
Use of automatic updating of linked fragments in Merge should always be carefully tested before
going "Live".

Design | Fragments

page 42

You can of course copy these files and modify them, but you should never save the new files back to this /
DO/Library folder as that folder will be replaced whenever you install a newer version of DocOrigin
software.

Libraries you create or modify should be stored in the DocOrigin/User/Library folder. (or more correctly
$U/Library). These User libraries and will not be affected by any upgrade of the DocOrigin software.

Adding Fragments

Fragments are added using the button on the Design toolbar. This allows you to select a fragment
library and either Link or Embed a library object into your design (including full pages). When a fragment is
Linked a small 'infinity' symbol will be displayed in the Design Form Explorer next to the object as an
indication that it has been linked. Design will not let you change the attributes of a linked fragment except
for its position and name.

You can review the list of fragments used on a form using the Tools>ViewAllFragments command.

Fragment Resolution
When a form containing Linked Fragments is opened in Design, each associated fragment library is
checked to see if the library contains a different (newer) version of the fragment. If so, that new library
version is loaded into the form and replaces the original one.

If a linked fragment cannot be found in its original library, or if the library cannot be found, Design displays
a list of all the fragments and highlights those that have not been found. If you know that the fragment has
moved to a different library, you can make that change immediately.

Linked fragments whose library entry have not been found are said to be unresolved fragments. You can
continue to use the form with these unresolved fragments and they will work as they always did. However,
Design will continue to report on any unresolved fragments whenever the form is opened or saved.

It is recommended that when creating a Fragment Library, you use the Design Notes feature to
provide a brief description of each fragment. The Tools>EditObjectNotes or Tools>EditPageNotes
commands will enable you to add the notes.
When the Fragment Selection dialog is displayed (see below) the Notes for the fragment are
displayed for the current selection. This gives allows you to provide additional document to the
designer.

•
•
•

When adding fragments to a completely filled Container, it is recommended that you turn on the
option "Display a small gap between top-level Panes". This allows you to insert Pane fragments into
the Container by targeting them between existing Panes. To set this option "On":

Select the menu option Tools/Options
Check on the option "Display a small gap between top-level Panes"
Click "OK"

Design | Fragments

page 43

Fragments in Merge
By default, Merge does NOT attempt to resolve link fragments. The existing definition in the form file will
be used. You can however direct Merge to check all linked fragments and load in new definitions just as is
done in Design by using the -FragmentAutoResolve option. Set
Merge ... -FragmentAutoResolve Yes ...
to enable this processing.

Linked fragments whose library cannot be found, or that cannot be found in the library are simply ignored
and the original fragment definition in the form continues to be used.

A detailed summary of which fragments were resolved can be found in the trace file by using the -Trace
option of Merge.

Design | Design Images

page 44

Design Images
One of the many object types that can be included in a form design is a graphic image. These can take the
form of static images or of image fields.

By selecting the image tool icon (looks like a maple leaf) from the toolbar the designer can drag out an area
to be filled by a static image. Then, using the Image File browse button in the Object Properties dialog,
the designer can select the desired graphic (logo, etc.). The designer can choose various options to fit the
chosen image into the nominated area.

The designer can choose image files of the following formats/file extensions:
 *.bmp, *.gif, *.jpeg, *.jpg, *.png, *.tif, *.tiff
 *.pdf – see below; needs a 3rd party tool

When defining an image field the designer uses the field tool to drag out an applicable area and then
selects the Image option from the Display as dropdown in the Field tab of the Object Properties dialog.
The data file is expected to supply a file name of one of the acceptable image types. By default, the data-
nominated image will be scaled to fit inside the field's extent without any scaling distortion. Other 'fitting'
options can be selected via script using the this._imageMode property. See DOM Properties

PDF Page as an Image
(This functionality was introduced in 3.1.002.01)

If you select a PDF file as the image then you will be presented with a follow-on dialog to choose which
page of the PDF to pick and also which DPI to use (default 150). This functionality is predicated upon the
existence of a 3rd party tool. See PDF Page Images.

Image as Template
A designer may choose to bring in a, typically full page, image as a means to, well, have a background
image, but also to be able to precisely place fields in their proper locations relative to that background
image. To bring in the, possibly temporary, background image, the designer is likely to use the Insert >
Image as Template... menu item. The designer then gets to pick an image just as with the usual image tool.
By default, this Image-as-Template image is marked invisible but of course, you can change that if you do
want it to appear in the generated output.

A popular choice may be to select a page of a PDF file to use as that image. See the previous subtopic.

Once that image has been placed (it will automatically be placed at the top-left (0,0) and will be in the
background, i.e. behind the dynamic area occupied by panes), the designer can select the "Auto-Field" tool
and simply point at an area of the screen that has a discernible rectangle around it. Design will find that
rectangular area and create a field that exactly matches it. Likely the designer would name the field and
then hold down the Alt key so as to bring back the "Auto-Field" tool. In that way, the designer can very
rapidly place many fields in exact size and registration with the background image. If the rectangle is a
small square, Design will deem it to be a checkbox field and set the field's attributes accordingly. Note that

Design | Design Images

page 45

before starting this process it is recommended that you set your grid unit to be very small, at least .01", if
not .001". In that way, you will get much better registration with the background rectangles.

Design | Object Tags

page 46

Object Tags
Object Tags are additional, seldom used, attributes that can be added to DOM objects in Design. This is
done using the Format > Object Tags... command in Design. Object Tags can also be set in Merge using
the DOM Script function domObj.setTag.

Standard Tags

AutoEmail Message Text
The AutoEmailConvert option is used on the Message object (usually a Label) within an AutoEmail page.
This flag controls whether the message text is actually already in HTML, or is in normal DocOrigin RTF and
must be converted to HTML.
AutoEmailConvert N (the default) assumes the text message is already in HTML.
AutoEmailConvert Y will convert normal DocOrigin formatted text from RTF to HTML.

Barcode Overrides
There are a number of Barcode options specified in the configuration files (.prt). These include default
display options such as
Barcode39Text, Barcode39DerivedText, etc.; default bar widths or ratios between wide and narrow bars,
special options like QRCodeCharacterSet, etc. These options can also be set on an individual barcode label
or field within Design by setting the corresponding object tag. So, for example, setting tag Barcode39Text
to value 'N' would suppress the default display of human-readable text below the barcode for a specific
Label or Field.

ellipsis
Set the value to the hex Unicode code for the character to be used on the particular Field when a text-
overflow condition occurs. Normally when field text overflows its defined size in Merge, the text is
truncated and the current ellipsis character (defaulted to ...) is added at the end. This Object Tag allows you
to override the default ellipsis character for a specific field. Note that you can set ellipsis to 00 to indicate
that the text is truncated but no character is appended to the text. See the Merge command-line option
-ellipsis for globally resetting the ellipsis character.

HTML Images as URL References
Normally the Merge HTML driver will embed any document images directly into the output html file. If you
already have the image available somewhere on the internet, you can specify that the driver simply
references that URL rather than embedding the image. To do this, set the Image object (static or Field) tag
ImageURL to the web URL for the image.

Design | Object Tags

page 47

•
•

•
•
•
•

•

PDF tags
A number of object tags are used to enable the designer to specify PDF/UA accessibility tags. Generally,
these tag names all start with "Tag" such as TagAlt, TagAs, TagTitle, etc. Note that TagAuthor, TagKeywords,
TagSubject, and TagTitle can be set for any PDF document - they are written to the PDF /Info dictionary and
will display as document properties in PDF viewers such as Acrobat. Others are only used when explicitly
generating PDF/UA.

RadioButton and CheckBox Options
DocOrigin RadioButtons and CheckBoxes have certain Size and Shape settings defined in the configuration
file (.prt). These can be overridden on a specific object by setting the corresponding Object tag. The setting
for CheckboxShape, CheckboxStyle, RadioButtonShape, and RadioButtonStyle can be overridden this way.

Direct Data Binding
(As of version 3.2.001.01) Direct data binding allows you to specify that a Field value or Text Label value can
be fetched directly from the data file by name, rather than using the usual data merging mechanism of
DocOrigin Merge. To do this, you set the Field or Label's BindData tag to the name of the field in the data
DOM. The name can be either a dotted data DOM expression or just the leaf name if the data name is
unique in the data file. You can also set BindData to an asterisk to indicate that the data node's name is
the same as the Field or Label's name.

The use case is intended for directly accessing information in the data DOM without using implicit data
mapping in the form DOM. Common use cases are:

when a field occurs in the data DOM but appears in another area of the form DOM
a shared field name is unique only by its parent node. For example:

you want to pull Customer Bill To Name in the Remit Tear-off of an Invoice
the data contains two CustomerName fields
fields are unique only by their parent nodes - <ShipTo> and <BillTo>
the Ship To Company Name can be directly bound with the following:
Tag name: bindData
Tag Value: CustomerInfo.ShipTo.CompanyName
the Bill To Company Name can be directly bound with the following:
Tag name: bindData
Tag Value: CustomerInfo.BillTo.CompanyName

See C:\DocOrigin\DO\Samples\Sample_Invoice.xml

<CustomerInfo>

Global Field Tip

If you want to use the Customer Bill To Name throughout the form using the Global Field setting,
create a new unique form field Name such as BillToCompanyName and set it to Global.

Design | Object Tags

page 48

 <ShipTo>
 <CompanyName>Perfect Printers</CompanyName>
 <Address1>425 Lansing Drive</Address1>
 <Address2>Moline, Illinois</Address2>
 <Address3>USA 61265</Address3>
 <Address4>Tel:800.555.2323 Fax:309.762.4411</Address4>
 </ShipTo>
 <BillTo>
 <CompanyName>Head Office, Perfect Printers</CompanyName>
 <Address1>800 Industrial Avenue</Address1>
 <Address2>Chicago, Illinois</Address2>
 <Address3>USA 60611</Address3>
 <Address4>Tel:800.555.3363 Fax:312.222.2345</Address4>
 </BillTo> ...

•
•
•
•

•
•

Use an Asterisk for Unique Fields

If you want to quickly map a single-occurring field to the form, you can match the form field name
to the data field name and enter an asterisk in the value. Try this

Start a new form
Open the Sample_Invoice.xml in the Data Explorer
Drag the field ShippingMethod onto a new form
Add the following tag:
Tag name: bindData
Tag Value: *

Run a PDF Preview with the Sample_Invoice.xml
You should see UPS on your test PDF

Direct Data Binding Limitations

Design | Object Tags

page 49

See Also

Copy Data Path To Clipboard

RetainWhenBlank Tag
(As of 3.2.001.01) Typically, when you place a new label object onto your form design, if there is no value
assigned to the label, it will be automatically removed. The RetainWhenBlank tag avoids this automatic
removal of empty labels.

See also the Auto/Embedded Fields description of [!Data name]

The bindData tag is limited to a single occurring field (not a field that is part of an array such as
Description in a repeating node called Detail).

Design | Design Keyboard Shortcuts

page 50

Design Keyboard Shortcuts

Alt+Ctrl+N - Looking at the XML for an Individual Object
In Design, if you select an object on the canvas or in the FE, then you can hit Alt+Ctrl+N, and you will be
rewarded with the XATW XML that corresponds to the selected object.
It could be useful to look at the rich text encoding of a label, especially, simply to see if it is pure plain text
or has some rich text. It can resolve some puzzles about hidden-in-rtf typeface usage. It's also a nice source
of simple, well-formatted rtf for test purposes.
Anyway, you might want to get a quick look at the to-the-metal encoding of your design object(s). You can
select multiple objects, or a group or pane or something and see the XML for all that you have selected. Of
course, there is always "Tools">"View Form as XML" to really quench your thirst, but that can be an
overwhelming firehose.

Ctrl+Shift+E - Save Image
One of the great things about DocOrigin is that images used in the Design are kept in the Design file. After
years and years with a previous product where you always had to go on endless searches for the graphics
files that went into a form design, what DocOrigin does is a true blessing. This is so handy for sharing and
indeed for providing collateral to your support organization. They have the images, they don't have to
come back to bug you for them.
You can find them in base64-encoded format in the XATW file. With effort you could copy that text out of
there, convert, ..., but hey, just select the image and hit Ctrl+Shift+E and Design will offer to save that
graphic in an appropriately typed (.jpg, .png, ...) file. Now you have it, you can use it in a new version of the
form. You can avoid Form Verification Report errors that say the images aren't where they are expected to
be.

Alt+X - Convert HEX Value to Unicode Symbol
Know any good Unicode characters? Sometimes it can be a head-scratcher to figure out how to enter them
into a label's text string. If you know that special character's Unicode hex value it is a breeze. You type in its
exactly 4 hex characters and then hit Alt+X. For example, suppose you want the division symbol, no not
that one, this one: ÷. Its Unicode value in hex is 00F7. If you type 00F7 followed by Alt+X, you will get that ÷
symbol as sweet as anything.

Ctrl+G - Manage Object Tags
This is just a normal accelerator key that you can see on the menu. It is used for editing object tags. It's
mentioned here because people don't always get into using object tags right away, but then when they do
they may want to use them a lot for PDF/UA or barcode options or whatever has been dreamt up by the
user. So knowing Ctrl+G can be a real timesaver. See PDF/UA tagging.

Design | Design Keyboard Shortcuts

page 51

ALT - Reuse Previous Object Tool
In Design you select an object tool from the toolbar, e.g. field or text, ..., and then you place that object on
the canvas. If you want to reuse that same tool to place another one on the canvas, you don't have to
explicitly reselect it from the toolbar. Instead, you can just hold down the ALT key and you will see that your
cursor changes to the previously selected tool's icon. This might well speed up your work.

ESC - Toggle Between Text and Object Edit
If you have a text label selected (i.e. with pick handles around it) you can hit ESC and thus go into text-
editing mode. Conversely, if you are in text editing mode in a text label, you can hit ESC and you will leave
test editing mode and have the text object be selected with pick handles around it. This is an essential skill.

Ctrl+Shift+A - Select All Objects in Pane
I've often wanted to move all the objects in a pane. If you select just one object in a pane, you can then do
Ctrl+Shift+A and it will extend the selection to include all the objects in the pane. Have at! You can then use
the arrow keys to shift them around a bit. Or you might apply a gang update using the modeless property
dialogs. Handy.

F5, F7, F8 - Preview
You can click on the PDF or HTM toolbar icons, or use F5 or F7 instead. Also F8 for Merge Test. When you
use these it applies whatever options were used most recently. If you want to supply new options, use
Ctrl+F5, Ctrl+F7, or Ctrl+F8. You would then get the usual dialogs to set the options before doing the
'preview deed'.

Ctrl - Line on a Diagonal
When you want to draw a line that is not horizontal or vertical you can: select the line tool; hold down Ctrl;
and draw a diagonal line.

Design | Data Explorer Options

page 52

Data Explorer Options

Open Data File...
Right-mouse click in the Data Explorer, navigate to the data file and select open.

Once the data file is open, your Data Explorer will display the data structure.

Change Document Separator Tag...
You can define your Document Separator Tag by name or by data DOM level. Simply enter the name or
number in the dialog shown below.

Design | Data Explorer Options

page 53

By default, the Document Separator Tag is Document. If your Document Separator Tag changes by name
but is always the second level of your data DOM, use 2.

Open the sample file C:\DocOrigin\DO\Samples\Sample_Invoice.xml in the Data Explorer and change
the Document Separator Tag to each level to see the results.

<?xml version="1.0" encoding="UTF-8"?>
<Sample_Invoice> <!-- Level 1 | Rare, only used for single document data files -
only 1 top level is allows in an XML document -->
 <Document> <!-- Level 2 | Most common level -->
 <InvoiceNo>2009-1704-3</InvoiceNo>
 <CustomerInfo>
 <ShipTo> <!-- Level 3 | Rare -->
 <CompanyName>Perfect Printers</CompanyName>
 <Address1>425 Lansing Drive</Address1>

Also See

-documentTag

Select in Form
The Select in Form option allows to right-click on the field in the Data Explorer and highlight the field in the
Design Workspace.

Allow for Dragging Tables
You can check the option Allow for Dragging Tables "On" or "Off". By default, panes are used when
dragging from the Data Explorer.

Allow for Dragging Tables "Off" (Default) Allow for Dragging Tables "On"

Design | Data Explorer Options

page 54

Copy Data Path To Clipboard
As of 3.2.001.12, the Copy Data Path To Clipboard allows you to copy the data DOM for Direct Data Binding
Tag.

See Also

Direct Data Binding Tag

Design | Form Explorer Options

page 55

•
•
•

Form Explorer Options
Form Explorer provides direct, quick access to some options for the form object properties. In addition, it
provides some features to expand and collapse the Form Structure. To access these options, right-mouse
click on any object in the Form Explorer. Many of the sample options are also available in the Workspace
with a right-mouse click. The following dialog will appear. Some options are:

self-explanatory such as Edit Script...
some contain child options such as Table
and some options are related to the display and are detailed on this page.

Design | Form Explorer Options

page 56

•
•

•
•
•

•

Table
The Table sublist allows you to insert a new table or modify the existing table. Most options are self-
explanatory.

One option that could use further explanation is Replace Cell. This allows you to change the object type
from one to another. To best explain this:

open the sample form C:\DocOrigin\DO\Samples\Sample_NestedTableWithRowShading.xatw
see the SalesByProductTable table

You can try this yourself by selecting the field called FullName
Right-mouse click and select Table > Replace Cell > Table
You will see that a table with 1 header, 1 row, and 4 columns was created. This is because that is the
current default for the Table objects.

If you want a different table design, click on the down arrow to the right of the Table Icon

Design | Form Explorer Options

page 57

•

•
•

Change the number of columns to 2 and turn off the Include header row

Selecting the field called EmployeeID
Right-mouse click and select Table > Replace Cell > Table
You should see a different table inserted

Link Objects into Pane
This feature lets you select one or more objects and link them into a Pane. Unlink removes that pane from
the tree and its children become the child of that unlinked pane's parent. Note, you cannot unlink a pane
that is a direct child of the Container.

Expand All Panes
This feature expands all panes in the Form Explorer, regardless of which object you right-mouse click.

Design | Form Explorer Options

page 58

Collapse All Panes
This feature collapses all panes in the Form Explorer, regardless of which object you right-mouse click.

Expand Children
This feature expands all panes, tables, and groups in the Form Explorer from the point of the right-mouse
click. This means it will only expand that branch. As you can see in the image below, the CustomerInfo
branch is expanded and the other branches on the same level remain collapsed.

Design | Form Explorer Options

page 59

Collapse Children
This feature collapses all panes, tables, and groups in the Form Explorer from the point of the right-mouse
click.

Design | Form Explorer Options

page 60

Copy Form Path To Clipboard
(As of 3.2.001.12) The Copy Form Path To Clipboard allows you to copy the form DOM for scripting. This is
similar to the result of the Script Editor when you select Insert Object Reference. However, that form
object structure returns the relative structure from the object you are scripting in. Meaning, if you are
creating a new field called City_State_Zip in a Group called ShipTo and you reference City, State, and Zip
within that same group, the script will insert only the field name. If you use the Copy Form Path To
Clipboard feature, you will capture the entire form structure from the document level. For example, if you
select the field Address4 in the ShipTo pane of the Sample_Invoice.xatw form, the result is
_document.CustomerInfo.ShipTo.Address4.

TagAs
The TagAs option lets you select the PDF/UA TagAs options from a list of options.

Navigating Complex Form Structures

Sometimes the form DOM is expansive, matching complex data structures such as Insurance
Policies or TelCo Bills. So it is useful when navigating the Form Explorer to Collapse All Panes, then
select the branch you want to work in and select Expand Children for that branch only.

Design | Form Explorer Options

page 61

FilterEditor | Subject Matter Expertise

page 62

FilterEditor

DocOrigin FilterEditor (aka FE) is a GUI tool that provides for an interactive way to design rules for
extracting data from textual overlay / spool / print /report files (we call them Source Files in this document)
that are produced by existing systems. FilterEditor extracts the data based on the defined rules and
produces an XML data file that can be consumed by DocOrigin Merge and possibly many of your own or
your partners' XML data requirements.

The result of a FilterEditor design session is an .xfilter file which is then used at Merge runtime (or
standalone) to convert the source file into XML. See Merge Filters.

Subject Matter Expertise
FilterEditor cannot automatically detect where fields are, how wide they are, or what their target field
names are. You must understand the source file and be able to identify sentinel locations and values that
you and the script you are producing can count on.

Once you have defined a discernable sentinel you can define any number of data extractions relative to
that sentinel's location. And you can have the script continue to look for other sentinels which when found
can be used to do more sentinel-relative data extractions.

Find sentinel -- extract, extract, extract...

Caution: This has been updated for 3.0.002.02 and later

DocOrigin FilterEditor, like all DocOrigin GUI apps, is supported on Windows 64-bit only.

FilterEditor | Learning FE

page 63

Learning FE

Beginner's Tip
In my opinion, you need a sample XML data file target to start – even if it is an empty one.

Make sure that your sample XML data file has the usual DocOrigin structure. That is...

<?xml version="1.0" encoding="utf8"?>
<XmlData>
 <Document>
 ... more if you have it
 </Document>
</XmlData>

FE normally looks for the <Document> tag, but you can specify a different tag name when you create a new
filter.

If you start with an empty XML data file then the first thing you should do is to add as many data field
element names as you can, including any desired XML structure. This then gives you target fields in which
to place your extracted data from the flat textual input that you are dealing with. You can add more fields
at any time, but it is surely best to have the field added before defining the extraction that fills it.

Sample XML File
You NEED a sample XML target file.

We are about to answer the age-old question of which comes first, the egg or the chicken.

In the absence of the provision of sample target XML collateral, the form design comes first.

The form design is your ticket to getting a sample target XML file. With that XML file, and subject matter
expertise (no getting around that), you are on your way to a productive FilterEditor session. Without it, you
are on your way to hair loss.

You are extracting the data so as to present it in a professional document format, i.e. to present it as
merged into a form (document) template. So there is no loss in designing the form first, and a lot of gain.
The first iteration of the form design need not be the ultimate in layout perfection but it will set the
framework of which data items are needed and whether they are in panes that are allowed to (expected to)
occur multiple times. With even just that much of the form design done you have taken a giant stride. I
aver that you now know more about your ultimate document presentation objective; you know exactly
which data fields are needed, and by virtue of Design's ability to create and save a data file with automatic

Opinion: Do not use the supplied .xfilter examples for learning.
Those bombard you with too much. Perhaps they are fine after the fact, but NOT when you are
learning. Come armed with only a sample source file and a sample target XML file.

FilterEditor | Learning FE

page 64

•
•
•
•

contents, that reflects the expected data structure, you have the grail of the mandatory target XML data
file for your FE "ride".

In fact, using the sample data produced for a form design is such a common operation that FE now allows
you to specify an XATW file as the sample XML file. FE doesn't interpret that literally. If the user has chosen
an XATW file, FE will cause sample data for that form file to be produced and will then use that generated
sample XML as sample XML to assist in creating your filter.

Acquire subject matter expertise
Design the target form
Use auto-data generation to get a sample data file
NOW, start FE, and load up that XML file, and load up the print/overlay/spool source file

You are on your way to a rewarding FE session.

Show those Menu Items
There is a Microsoft standard, user-configurable, option for determining whether the menus in an app
automatically show all their entries right away, or instead show only recently used menu entries. You are
learning. You need to see all possible menu items right away. You will see things that intrigue and inform
you. You want to see all menu items when you are learning any app.

Use View > Toolbars and Docking Windows > Customize... – choose the Options tab.

FE Show full menus

Ensure that Menus show recently used commands first is unchecked. Now you have a hope of learning.

FilterEditor | Learning FE

page 65

Filter Editor - 101
For your first real FE session, after you wasted your time looking at a goulash of samples. (I told you not to),
you launch FE. You do a File – New You will see:

FE Designing a new filter

Supply the name of your overlay/print/spool text "source" file. One that you understand and have the
needed subject matter expertise for.

Supply the name of the XML file that you saved from Design using your initial form design, the one that is
the eventual target of the data you are about to scrape off of the above source file.

Now you're cooking.

How does it work
What! I thought you were going to show me how to do data extractions. What's with more 'theory'?

I think you need some theory of operation before blindly leaping in.

In FilterEditor, you define Rules and Actions. Each Rule is really a specification of something to look for in the
coming lines of the source file. I call it looking for a sentinel. An Action is, at least 99% of the time, an
extraction, that is to grab some data off of the source file and put it in the target XML file.

That's it. FilterEditor in a nutshell is "Find sentinel, extract, extract, extract", "Find sentinel, extract, extract,
extract", ...

Defining a Rule
Look over the central source file canvas area. Do you see some string of text that indicates the beginning of
(or at least anchor point for) a section of the report? Select that text with your mouse or shift-arrow keys.

If you can't supply those two things, you are not ready for FE 101.

FilterEditor | Learning FE

page 66

•
•

Now right click that selected text and choose: Add Rule. FE will add a Rule for you. You will see it in the
right-hand panel which is named "Filter Rules". It will look something like this.

FE Defining a Rule

Your job is to type overtop of *NextSectionName* to provide the name of the State that you believe the
detection of this sentinel puts you in.

You [have a] Rule!

Defining an Extraction
Back to the source file. Do you see a piece of text that should be "scraped off" as a value for a field? Select
that text by mouse or shift-arrow keys and right mouse click it. In the context menu choose Extract Data.
A data extraction Action will be added below your Rule. It will look something like:

FE Defining an Extraction

Your job is to replace the *Field* entry with the name of an actual field in your XML file. That's easy
because you have a dropdown of the entire XML structure to pick from.

Review
You have added a Rule.
You have added a Data Extraction

Uh, that's all there is! Easy! Add more data extractions. When you have extracted all the data you can based
on the current sentinel, select the text for another sentinel, and Add Rule. Repeat, repeat, repeat.

Rule order
The Rules are processed, top to bottom. The first one that finds a sentinel wins, and the extractions related
to that found sentinel are done. Don't worry about the order of Rules right away. It is terribly important but
there is a Move Up/Down capability so you can work the order out later.

FilterEditor | Learning FE

page 67

States
When one of your Rules finds a sentinel, it always sets a State name. In fact, each Rule is of the form If
State is xxx, then look for this sentinel. This is very important. You may have hundreds of Rules defined,
but only the Rules that apply to the current State of the line being scanned matter, the others are skipped.
So it is not a free-for-all of looking for every possible sentinel all the time. It is controlled; look for only
those sentinels that apply to the State the current line has, and if you find one, you most likely go into a
new State, where different Rules apply. In essence you "walk" down the source file going from State to
State.

A tiny update. In fact, you can provide a comma-separated list of If State is States, but the effect is still the
same. Not all Rules apply, only those pertinent to the State the current line is in.

The *Start* state
FilterEditor always begins in the *Start* state. This can be a convenient state to use when looking for
something at the top of the file. Using the *AnyState* state would check such a rule on every line. But the
Start state is very specific to the top of the file.

The *AnyState* state
There is a special "pseudo" State with the name *AnyState*.

The *AnyState* State means 'I don't care what State the current line has'. If my Rule says "If State is
AnyState ..." then that Rule applies regardless of what the current State of the line being scanned is.
Because such rules are so widely applicable, they are generally placed at the bottom of your list of Rules.
Rules which are state-specific should precede those that are "any old state" non-specific. Use the Move Up/
Down feature available as a right mouse click context menu on Rules to reorder your Rules, highly specific
up top, highly general at the bottom.

The current line
Unsurprisingly, FilterEditor (FE) has a concept of the current line. That current line can move only forward,
never back up a few lines, inexorably forward. Sometimes this is also called the anchor line.

To begin with, FE reads the first line of the source file. It then cycles through all the Rules that apply to see
if this line has a sentinel in it. If it doesn't, it moves on to the next line and repeats running through all
applicable Rules. Eventually, it finds a sentinel.

Once a sentinel is found (FE has matched the Rule's State name to the line's current State and the "Test"
has succeeded), the Rule's Actions (if any) are performed. Typically these actions are Extractions of field
data. Once the Actions are complete the current State changes to the one specified in the Rule as the "State
becomes" name. The "current line" is advanced by 1 to the next line in the source file, and the whole
process cycles again.

FilterEditor | Learning FE

page 68

1.
2.
3.
4.
5.

Extractions
Once a Rule has successfully matched the current line in the source file, you can add Extraction definitions
which tell FE how to take data fields from the source file and store them into the XML file.

Extractions are not bound by the endlessly forward movement of the current line, nor are they bound by
one line at a time inspection. Extractions specify relative line and absolute column ranges. They can reach
back to before where the sentinel was found, using a negative line number. They can reach forward as
many lines as necessary to nab the data of interest. Having found a sentinel, a guidepost, you can pick data
from all over the place relatively speaking. Think of a "header" section of a report – it's probably multi-lines
long. If your Rule has found a sentinel that indicates the presence of that "header", then you will likely want
to do extractions of many fields from that header area. Do so – you don't need to find more sentinels
within the already identified header area.

Doing an extraction has no effect on FE's notion of the current line. However, one Action that you may
choose to include after doing a bunch of extractions from an identified header area is to Advance n lines so
as to skip over the rest of the header area before starting to look for sentinels again.

Variable Length Extractions
This is advanced material. Please skip it until you have had a good deal of experience with FE.
Per the above, you can specify the exact columns and lines that you want to extract. But what if the
number of lines varies. A classic example is to want all the description lines up to the next detail line
header. A Custom JavaScript function could certainly get you there but the span action step may be
sufficient.

Select the first line of the data to be extracted. Leave the number of lines at 1.
Right-click the Select line of the extraction definition.
Choose the Add Action Step context menu entry.
Select the Span only if not= offering.
Fill in the column start and end arguments and the text that will terminate the selection, e.g. text
that occurs in the next detail line header

You will now be selecting as many lines as exist until the 'sentinel' that you identified occurs.
Depending on your circumstances you may choose to use the "Span only if =" offering.

Moving on
When all the extractions defined for this 'sentinel find' are done, it's time for FE to resume looking at the
next line to see if it can find any applicable sentinels in it. Just as it was doing when it started out. It may
seem that with all the extractions that just went on, the current line is all "picked over". Irrelevant.
Extractions from a line have no bearing on a line's still being subject to sentinel searches. Line-by-line, that
current line will move forward and each line will be searched for sentinels that apply for the then current
State. (An explicit Advance n Action can jump the current line ahead by more than 1.)

FilterEditor | Learning FE

page 69

Filling in the XML
When you define an extraction, aside from selecting the area on the source file to be scraped off, you also
nominate a target element in the XML file. Initially that's dead easy. But eventually you are going to do an
extraction that wants to go into a data element that you already put stuff into. Now what?

When this happens, FE will automatically make a duplicate empty copy of the parent XML structure
including all it's child nodes. This in effect creates a duplicate "record" for more data.

The element that you just scraped off the source file now has a home to go to. And the upcoming sibling
scrapings also have fresh new homes to go to.

It's really quite a simple process, but you do need that target XML to make it feasible.

Non-extraction Actions
Not quite every Action is an extraction. Some Actions may have nothing to do with text selected on the
source file. They are just things that you want to have happen whenever this Rule fires.

In the Filter Rules panel, right mouse-click on a Rule, and choose Add Action. You will get a dialog that
identifies a set of Actions that are available. Choose one and it will be added to the list of actions (including
extractions) that are performed when the Rule is triggered.

Start New Document
The xfilter processing automatically gives you a start-new-document tag, i.e. <Document> at the start of the
XML file.
However, if the report you are scraping can contain multiple documents' worth of data, then you should
(must!) include a Start New Document Action in some Rule. A classic would be the detection of "Page 1"
somewhere in the source file. There must be some means by which you can identify when a new
document's information begins. Use that to define a Rule and add the Start New Document Action to that
Rule.

Extraction Steps
You will immediately notice that an Extraction (really a special kind of Action) is not a "one-liner". In fact it is
a macro that revolves around the text that has been selected on the extraction. It could be that you will
want to "fiddle with" that extracted text before you stuff it into an XML element. As a strong default, FE
automatically does a "Trim blanks" Step. It then does a "Store as Field" Step. This is what you want, and all
you want, most of the time.

But you can get adventurous by right-clicking on the Extraction line, and choosing "Add Step". It brings up a
dialog of available steps. It's much like, and even overlaps the dialog for "Actions", but it is different. The
steps are generally ones that involve the text that was selected for the extraction.

You can add as many steps as you like. You can delete them too. It is remotely possible that you might
even delete the "Store as Field" step.

FilterEditor | Learning FE

page 70

1.
2.
3.
4.
5.

The Lexicon
Rules are Rules; order matters; find a sentinel
Extractions – a common, specific type of Action.
Actions – especially non-extraction Actions. One-liners: 'take this action'
Steps – apply to only Extractions; used to play with the nominated text in some way
State – the data transformation process always maintains a current State name. this State name is
matched against the State defined in each Rule to determine which Rules to execute. After execution
of a Rule's Actions, a new current State is set.

Sentinel detection
A Rule automatically gets a When clause that refers to the sentinel text that you highlighted and specifies an
equal (=) condition. That's almost always what you want. However, all those arguments of the Rule are
editable by you. You don't have to go precisely by the text that you had highlighted; you can freelance it.

In particular, one sometimes wants to change that equals to 'not equals'. You can do that by right mouse
clicking the = and choosing Change Test.

You'll find an interesting selection of tests to choose from. They are all meant to provide a true/false result.
You might want to study them sometime, but mostly only for keeping in your back pocket.

Ways into a State
Sometimes there is more than one way to get into a State. But you have a strong desire to express the
Extractions for that State in only one place. The classic example that we hit is coming from State "A" to a
Detail line, then being on a Detail line, wanting to get to the next Detail line. You could open it up
completely and express your rule as.. If State is *AnyState* etc, but that might be a bit too open, a little
unnerving even.

Instead, you can claw back control by keying in a comma-separated list of States so that you end up with
something like: If State is A,Detail etc. That way your sentinel selection is predicated on a chosen list of
current States, not the open-ended *AnyState*. It works quite well.

FilterEditor | FilterEditor JavaScript

page 71

1.

2.

FilterEditor JavaScript
One of the Steps you can perform on an Extraction or an Action is the JavaScript step. This allows you to
insert a line or a whole block of JavaScript to be executed. Using this script you can access the currently
selected line or lines of text, change them, access the current output XML tree, and other text lines in the
source file.

A set of access functions are pre-defined to allow you to access various settings and values within the
transformation processor. And you also have the option to define your own custom functions.

Custom Functions
You can use the FilterEditor Filter>Edit Script... menu item to define additional "helper" JavaScript
functions that can be called from a JavaScript action.

As an example, you could add the following JavaScript function to remove commas from a numeric string:

function removeCommas() { // remove commas
 var text = $$GetText(); // get current selection
 var newtext = text.replace(/,/g,''); // remove commas
 $$SetText(newtext); // update selection
}

In the above...
$$GetText() is a built-in xfilter function to let you access the selected text for this Extraction.

$$SetText(theText) is a built-in xfilter function to update that selected text – not on the source file canvas,
but in memory such that subsequent Steps, such as Store as Field would be using that updated text.

Now that you have defined your custom function, how do you use it?
Besides the Filter>Edit Script... menu item, you can provide some JavaScript in two places.

If you were to right-click on a Rule or on an existing Action under a Rule, you could use the Add
Action... context menu entry, and thence select "JavaScript Execute some JavaScript code". You will
get an edit window that allows you to add the script.
If you were to right-click on a step of an Extraction Action, you could use the Add Action Step
context menu entry, and thence select "JavaScript Execute some JavaScript code". You will get an edit
window that allows you to add the script. A typical place to do this is by right-clicking on the Trim
Blanks Extraction Action step.

What if you want to edit your script?
In either of the above two cases, you will see an Action or an Action Step that is led off by the word
JavaScript. Click on the area to the right of the word JavaScript and you'll get an edit window that allows

FilterEditor | FilterEditor JavaScript

page 72

you to view or edit the script. As you exit that window FilterEditor will automatically "compile" the script
and check for common JavaScript syntax errors.

It could look like this:

FE Custom JavaScript Call

Notice how easy it was to invoke your pre-defined custom function.

All the standard DocOrigin add-on functions are available - including _message(), _logf, _file,
XmlClass, etc. By default, FE produces its own log file named FilterEditor.log.

FilterEditor Functions
A number of additional functions are available within the xfilter scripting world. These routines are used to
access or modify the processing of the transaction processor.

$$Advance(n) - causes the transformation processing to skip forward in the source file "n" lines.

$$GetActionNumber() - returns the current Action's number. Useful for debugging messages.

$$GetCurrentState() - returns the State name that the current Rule matches - that is, the State name(s)
from the "If State is" section of the Rule.

Custom Functions are IMPORTANT

PLEASE Do not skip by the above topic of defining your own reusable custom JavaScript functions.
You may put them in a file and simply #include that file, e.g. #include "$S/feUtils.wjs" in every
xfilter that you create. If something is difficult using the bare FE rules and actions, define a custom
function once and add it to your repertoire. Make your life easy.

The xfilter Transformation process always advances one line in the source file after every
successful Rule and Actions are processed. So calling $$Advance(0) still means that the new State
will be looking at the next line in the source file. If you want to skip the next "n" lines in the source
file, you must call $$Advance(n-1).
$$Advance() cannot move backward in the source file. Darn it!

FilterEditor | FilterEditor JavaScript

page 73

$$GetField(name) - get the text currently assigned to field name in the output XML tree. This will retrieve
the current or most recent value assigned to name. name can be either the "leaf" or field name, or a full
dotted syntax such as "Header.Address".

$$GetLineCount() - returns the number of lines in the entire source file.

$$GetLineNumber() - returns the current line number within the source file. Useful if you're logging or
displaying an error message. NOTE - lines are numbered starting with 0 as the first line in the file.

$$GetNextState() - returns the name of the next state the current rule will transition to. Useful for
debugging messages.

$$GetRuleAnnotation() - returns the annotation text associated with the current rule (or null). Useful for
debugging messages.

$$GetRuleNumber() - returns the Rule# of the current rule being processed. Useful for debugging
messages.

$$GetText() - returns the current Selection text. If the selection is a single line (typical) that string is
returned. If the selection spans multiple line$$Ges, an array of strings is returned.

$$GetTextLine(n) - fetch the nth overlay line relative to the current rule's trigger line. This function returns
the entire "raw" input line but without the trailing newline (\n) character. n can be negative.
$$GetTextLine(-$$GetLineCount()) will return the very first line in the file.
$$GetTextLine(0) will return the line that caused the state assignment rule to trigger.
$GetTextLine(1) will return the line that follows the line that caused the state assignment rule to trigger.

$$Return(true/false) - sets the Test logical state when a JavaScript statement appears within the Test part
of a Rule. By default, all scripts return "true" unless this routine is called.

$$SetField(name, value) - updates the current XML tree field with a new value. Note that it is somewhat
different from how the "Store a Field" operation works. "Store as Field" will not replace an output value,
but instead automatically creates a new instance of the field's parent structure or pane.
$$SetField will replace a current value.

$$SetNewState(name) - overrides the name of the State when this Rule is complete. This overrides
whatever is currently set in the "State becomes" section of the Rule.

$$SetPI(string) - adds a DocOrigin Process Instruction to the start of the generated xml file. string is the
text that will appear in the PI.

$$SetText(newtext) - update the current Selection to be this new text. newtext can be either a single string
or an array of strings.

FolderMonitor | FM on Windows...

page 74

FolderMonitor
FolderMonitor is an application for processing "submitted" data files. FolderMonitor runs as a background
task on a server. The system administrator will have had to make decisions on where collateral, e.g. form
files will be deployed on the server, where scripts are kept, and where data files are to be submitted for
processing. User applications write data files into a specific file folder(s) that are monitored by
FolderMonitor. When files appear in these folders, FolderMonitor will process one file at a time; determine
what processing is required on it, and execute a nominated-by-you JavaScript script to do the processing.

FM on Windows...
There is a FolderMonitor Service (DocOriginFolderMonitorSvc) that runs as a Windows Service. Typically it is
set to start automatically on reboot.

There is also a GUI program — DocOriginFolderMonitorConsole — that allows a system administrator to
start, stop, and look at the log of a FolderMonitor process.

When the system administrator uses the FolderMonitorConsole app to start FolderMonitor processing, the
service launches the actual DocOriginFolderMonitor application as a background app. It is that app that
watches the folders it is configured to watch, for any submitted data files to process.

On Windows, one can configure FolderMonitor to use multiple monitor instances. See Multiple
Monitors and -monitor. When that is done, the FolderMonitorConsole app allows you to start an individual
monitor instance (or all at once, if desired).

FM on Unix...
There is no DocOriginFolderMonitor Service/daemon, nor any DocOriginFolderMonitorConsole.

The system administrator runs the DocOriginFolderMonitor process directly via the command line.
Undoubtedly he/she will end that command line with an ampersand (&) so that the app will continue to run
in the background as he/she continues to use the system console for other duties. Of course, the
command would also specify any needed options, almost certain via an @xxxxx.prm command line
reference.

A convenience starter shell script named 'fm', is provided in the .../DO/Bin directory. It is just a script, copy
and edit it as you see fit. It enables one to say: fm start, fm stop, and several other actions that may be
of interest. Do examine the script and tailor it to your needs. It is not intended to be a see-all/do-all
interface for any site, but an example of what you can do. You will likely want to adjust it to reflect the
queues/folders that you use. On re-install, we will overwrite 'fm', so copy it and make it your own.

Note that multiple instances of the FolderMonitor process can be run in the background. They operate
independently.

You stop a FolderMonitor process on Linux the same way as you would stop any background job on Linux,
by using the kill command. kill does not abort the job that is being processed. The default signal sent by
the kill command is SIGTERM. FolderMonitor catches SIGTERM. The signal handler just sets a flag and

FolderMonitor | FM on Unix...

page 75

continues. Because we catch the signal, it is not propagated to FMTransaction, which is the child process
that actually processes a job. If the flag is set when we finish processing a job, or when we have finished a
scan for new jobs, we do the usual shutdown, reporting quarantined files etc. But any job being processed
when the kill signal was received is safely done.

We don't believe that the DocOrigin product should take over your site. Rather it should fit into
what you already do. That is why we provide fm as only an example for you to revise, or even
discard. We do not want to impose constraints on how you do your work. Nor do we want to
provide a system with so many configurable options that you need another system to configure
those options! We believe that we should keep it open, and keep it simple. For any individual site,
the specific operations needed should be easy to accomplish -- and understand.

FolderMonitor | FolderMonitor Command Options

page 76

FolderMonitor Command Options
FolderMonitor has several command-line options that control its operation. Those options are listed in the
menu on the left of this page.

FolderMonitor also has the standard DocOrigin command-line options as described in the Common
Command Line Options section of this document. In particular, it requires that -logfile and -message be
defined either explicitly or in one of the default .prm files.

FolderMonitor | FolderMonitor Command Options

page 77

-concurrent
(DocOriginFolderMonitor.prm only, as of 3.0.004.13)

Define how many jobs this FolderMonitor instance can run concurrently.

Syntax
-concurrent n

Description
A FolderMonitor (FM) instance processes jobs from the -queue1 through -queue10 definitions that specify
folder names and file masks to monitor. By default, each instance processes one job (i.e. data file) at a
time. With the -concurrent option, FM can be instructed to process multiple jobs in parallel.

The default value for n is 1 -- meaning 'process one job at a time'. The maximum value for n is 62. A
sensible value would be in the vicinity of the number of logical processors that your server has. (On
Windows: echo %NUMBER_OF_PROCESSORS%).

FM processes a data file by handing it off to the FMTransaction process. Before 3.0.004.13, FM waited for
FMTransaction to complete before moving on to the next file. Now FM will launch additional copies of
FMTransaction up to the -concurrent setting value. If it can launch no more copies of FMTransaction, it will
wait for one of them to end, before launching a new one.

Naturally, the order in which the jobs are processed will not necessarily be first in first out. Also, the log file
will have interleaved messages from all of the jobs being run concurrently. Of course, each message entry
carries its JobId tag.

This setting is most advantageous when many independent, often single document, jobs are being placed
in the folder(s) that an FM instance is watching. It would also be of benefit when there is an occasional
large (many, many documents) job mixed in with large numbers of small jobs. In such a scenario, the large
job would not hold up all of the smaller jobs.

FolderMonitor | FolderMonitor Command Options

page 78

-errorFolder
(Mandatory)

A FolderMonitor folder into which failed queued data files are stored.

Syntax
-errorFolder foldername

Description
This specifies the folder into which queued data files are copied if they are not successfully processed. In
addition, a short excerpt from the logfile is also stored at the same time. It contains the last few logfile
entries - typically highlighting the error condition.

See Also

Command Line Processing FolderMonitor Command Options

FolderMonitor | FolderMonitor Command Options

page 79

-ExitNow
A file name that will have FM quit processing any more jobs and end as soon as the currently in-process
jobs are done. I.e. a nice shutdown as opposed to a "kill".

Syntax
-ExitNow filename

Description
By default, if a file named EXIT.NOW is found in the queue1 folder of a FolderMonitor instance, that
instance will stop as soon as the current job is completed. And the EXIT.NOW file will be deleted. If there is
an "EXIT.NOW" file in the folder when FolderMonitor is started then FolderMonitor will do one job (if there
is one) before it stops. You can choose a different name for the file to be looked for by setting the ExitNow
option. If you set it to nothing (-ExitNow=) then this file checking will not occur.

The default value is EXIT.NOW.

See Also

-ExitWhen

FolderMonitor | FolderMonitor Command Options

page 80

-ExitWhen
A file name that will have FM quit processing any more jobs and end as soon as the specified file comes up
for processing.

Syntax
-ExitWhen filename

Description
ExitWhen will cause the same thing to happen as -ExitNow but only when the ExitWhen file comes up for
processing.

By default, if a file named EXIT.WHEN is the next job to be processed, then the FolderMonitor instance will
stop and that EXIT.WHEN file will be deleted. You can choose a different file name to be sensitive to by
setting the ExitWhen option. If you set it to nothing (-ExitWhen=) then this file checking will not occur.

NOTE: This file name must fall into the job file name mask, otherwise it will never be encountered. Given a
mask of *.xml, you might wish a name like: ExitWhen.xml.
The default value is EXIT.WHEN.

See Also

-ExitNow

FolderMonitor | FolderMonitor Command Options

page 81

-FMScript
(As of 3.1.001.10)

Identifies an override script to be run when the FolderMonitor instance itself starts and stops. That is, this
is not on a per job basis, but for an entire run of a FolderMonitor instance.

Syntax
-FMScript scriptName

Description
FolderMonitor, by default, runs script $E/Default-FMScript.wjs when it starts and when it ends. This
-FMScript option allows you to specify an alternative script to be run at those times. The scriptName must
include path information. Typically it would be $O/FMScript.wjs.

When the script is invoked it is provided with an _fm object which contains the command line options and
a set of statistics that may be of interest to the script writer. Please read the comments in $E/Default-
FMScript.wjs.

The statistics that are supplied in the _fm object are:

Property Description

StartTime When the FM instance started, in seconds since Jan 1, 1970.

EndTime When the FM instance ended, in seconds since Jan 1, 1970. This is 0 when the
script is called at the start of an FM instance.

PassJobs The number of jobs that were processed successfully.

FailJobs The number of jobs that failed, and hence were copied to the error folder.

Quarantined If FM encounters a job but cannot get read access to it, it quarantines that file. It
will retry the file from time to time. This statistic gives the number of files that
were still in quarantine when FM was about to end.

Pauses FM will continue processing jobs until all its queues are empty. At that time it will
pause for the time specified by the -pause option. This statistic identifies the
number of times that FM paused because it had no jobs to do. You might use this
statistic to judiciously adjust your -pause time.

RC This is the return code that FM is about to exit with.

The above properties can be accessed case-insensitively. (Unusual for JavaScript.)

See Also

FolderMonitor | FolderMonitor Command Options

page 82

Command Line Processing FolderMonitor Command Options

FolderMonitor | FolderMonitor Command Options

page 83

-JPSName
Skip job name discovery and use the supplied name for the job processing script.

Syntax
-JPSName filename

Description
The -JPSName option specifies the JavaScript file to be executed to process the job. If this option exists the
job name discovery script will not be executed, rather the script named herein will be used as the job
processing script.

If this option is not specified, and there is no DocOrigin PI then the usual job name discovery script will be
invoked.

If the option does specify a name, then the Folder Monitor (FM) processing will look for that job processing
script (JPS) in the designated scriptFolder . The JPS file name is the provided job name concatenated with
".wjs". For example, if the option specified "Invoice" then the FM processing would look for a file named
"Invoice.wjs" in the folder identified by the -scriptFolder option. If that file is found, that script will be
launched and its eventual return code will determine whether FM considers the job to have succeeded or
failed. The JPS can perform many, many steps. It's completely open-ended. Typically it does include a
DocOrigin Merge step.

If the job processing script (JPS) file is not found, FM will revert to using $E/Default-JobProcessing.wjs.
Note that that default script has a ##include $O/JobProcessing.wjs and so if you have created such an
override file, that override script will be used.

If the data file is XML and has a DocOrigin processing instruction that includes a job=xxxxx attribute, then
this -JPSName option will be entirely ignored. The job attribute tells FM which JPS to run.

Usage
Oftentimes a given FolderMonitor instance is used for only a single job type, e.g. only packing slip jobs are
placed in the instance's watched folder. That is an ideal time to use -JPSName.
Depending on your personal taste, your -JPSName script could still handle multiple job types. A JPS can do
everything a JND can do. There would be nothing stopping your JPS' logic from briefly examining the data
file and then having logic, within the one JPS, to process any of the expected possible job types. Some
people prefer to factor logic out into individual files, some prefer to keep it all together, to have fewer files
to maintain. The choice is yours.

See Also

Job Name Discovery Command Line Processing FolderMonitor Command Options _job Script
Object

FolderMonitor | FolderMonitor Command Options

page 84

-pause
Amount of time FolderMonitor will pause when it finds there is no data file to process.

Syntax
-pause seconds

Description
This is the period of time, in seconds, that FolderMonitor should pause when it finds that there are no data
files to process. The default setting is 0.5 seconds. This pause time ensures that FolderMonitor will not use
an inordinate percentage of the CPU time in futile times to keep checking for jobs to do.

See Also

Command Line Processing FolderMonitor Command Options

FolderMonitor | FolderMonitor Command Options

page 85

-processedFolder
Optional FolderMonitor folder into which successfully processed queued data files are stored.

Syntax
-processedFolder foldername

Description
The processedFolder is an optional folder into which queued data files that are successfully processed will
be copied. If this option is not specified, no copy of these files is retained. In that case, the data files are just
deleted after they have been successfully processed.

See Also

Command Line Processing FolderMonitor Command Options

FolderMonitor | FolderMonitor Command Options

page 86

-quarantineTime
How long to wait for a data file to be closed before assuming it never will be.

Syntax
-quarantineTime minutes

Description
The quarantine time setting tells FolderMonitor how long to wait for a data file to be properly closed by
whatever application is creating it. After this number of minutes has elapsed, and the file can still not be
opened, FolderMonitor will trigger an Error to the logfile.

If you have configured email Alerts on Error conditions, an email will be sent to notify someone of the
condition. See the -alert section for more details.

See Also

Command Line Processing FolderMonitor Command Options

FolderMonitor | FolderMonitor Command Options

page 87

-queue
Specify one or more file folders to serve as input queues to FolderMonitor.

Syntax
-queue foldername/file mask

Description
The -queue options list one or more file folders and file masks that will serve as Queues for FolderMonitor.
At least one (-queue1) must be specified. The queue specification must include a file mask; e.g. *.xml , or
.
These queue parameters are named -queue1, -queue2, ... -queue10 .
Your application must write files into one of these Queues. FolderMonitor will retrieve and process them.

See Also

Command Line Processing FolderMonitor Command Options

FolderMonitor | FolderMonitor Command Options

page 88

-script
(Mandatory)

A JavaScript file to be used for Job Name Discovery (JND).

Syntax
-script filename

Description
The -script option specifies the JavaScript file to be executed to discover the job name. Commonly called
the JND script. This job name is subsequently used to identify a second script that is used to process the
data file.

The JND script is intended to examine the supplied data file (identified in _job.datafile) and compute which
job name applies. E.g, is it an "Invoice" job or a "Statement" job or ... Typically this is done by looking at the
first few lines of the data file for some identifying string. Often, for XML files, it is the root tag name. For
field nominated format files it is often the job name in the ^job card, but you can use whatever technique
you like to identify which job name to apply to the given data file.

The JND script's task is to return a string that identifies the job name. E.g.

 return "Invoice";

If the script cannot identify an applicable job name it should: return ""; That will cause the job to fail with
error code 84 (and the data file to be saved in the designated ErrorFolder).

If the script does return a name then the Folder Monitor (FM) processing will look for a job processing
script (JPS) in the designated scriptFolder . The JPS file name is the provided job name concatenated with
".wjs". For example, if the JND returned "Invoice" then the FM processing would look for a file named
"Invoice.wjs" in the folder identified by the -scriptFolder option. If that file is found, that script will be
launched and its eventual return code will determine whether FM considers the job to have succeeded or
failed. The JPS can perform many, many steps. It's completely open-ended. Typically it does include a
DocOrigin Merge step.

If the job processing script (JPS) file is not found, FM will revert to using $E/Default-JobProcessing.wjs. Note
that that default script has a ##include $O/JobProcessing.wjs and so if you have created such an
override file, that override script will be used.

Besides identifying the job name to apply, the JND can also set arbitrarily named properties in the
_job.options object. The _job.options object is available to the JPS when it is run. As it happens, the JND
can also set user-chosen global JavaScript variables. Those too are available to the JPS. Note that neither
the global variables nor the _job.options object are available to the scripts defined in a form design.
Merge is a different process than FM and so does not have access to that information. Typical information
that you might store in the _job.options object are items gleaned off of the ^job card in a field nominated
format data file scenario.

FolderMonitor | FolderMonitor Command Options

page 89

If the data file is XML and has a DocOrigin processing instruction that includes a job=xxx attribute, then
this -script option will be entirely ignored. No JND script will be run as the job attribute tells FM which JPS
to run.

See Also

Command Line Processing FolderMonitor Command Options Job Name Discovery _job Script
Object

FolderMonitor | FolderMonitor Command Options

page 90

-scriptFolder
(Mandatory)

A FolderMonitor folder containing the scripts for processing jobs.

Syntax
-scriptFolder foldername

Description
This folder contains the scripts used for processing each job. FolderMonitor looks for a script called
jobname.wjs in this folder (where jobname is whatever name is returned by the discovery script from
the -script command option).

The default job processing script (as opposed to job name discovery script) assumes that jobname.xatw is
the name of the form design file to be used and executes DocOrigin Merge to merge the data file with the
form file. Frequently you will want to override the $E/Default-JobProcessing.wjs file with an override file
in $O/JobProcessing.wjs.

See Also

Command Line Processing FolderMonitor Command Options -script

FolderMonitor | FolderMonitor Command Options

page 91

-UpdateCounts
(As of 3.1.002.10)

An option to control sending of jobs counts updates to Folder Monitor Console.

Syntax
-UpdateCounts true/false

Description
When enabled, FolderMonitor maintains the number of processed files and files waiting in the queues and
sends this information to Folder Monitor Console.

NOTE: Enabling job counts updates can affect folder monitor performance.

The default value is false.

FolderMonitor | Functional Overview

page 92

1.

2.

Functional Overview
FolderMonitor is configured using a series of command-line parameters. These include the standard
command line parameters (see DocOrigin Command Line Processing) and command-line conventions. The
specific FolderMonitor command-line options are listed in the Command Line Options section.

Folder Monitor

See also

Folder Monitor Architecture.

FolderMonitor is fed data files from Client Application(s). These files must be written into Queues (folders)
identified in FolderMonitor's configuration. Each of those files is considered a 'job', in DocOrigin parlance.
When the file appears in the Queue (folder) FolderMonitor will read the file and process it using a two-step
process:

A job "discovery" script is run. This script assigns a job name to the file. For example, by looking at the
data stream the script may determine that this is an Invoice job, or a "Purchase Order" job, or a ….
A "processing" script is run. The script file name is the job name returned by the first step. (In other
words, if the job name is determined/discovered to be abc , FolderMonitor processes the job with a
script called abc.wjs .)

This scheme allows a fairly simple script to determine what kind of file it is (and hence what form or
processing to apply). This then leads to running job-specific scripts against each job type. These scripts are
typically tiny, cut-and-paste items, but, if the need ever arises, the power is there to orchestrate all manner
of processing flows.

Through these scripts, FolderMonitor can access DocOrigin Merge, send emails, convert the data, etc. If
errors are encountered the data file will be retained in an Error Folder for later examination and remedial
action.

On Windows, the FolderMonitorConsole program can be used to start and stop the FolderMonitor
service.

https://docs-admin.docorigin.com/display/ILT/Folder+Monitor+Architecture

FolderMonitor | Multiple Monitors

page 93

Multiple Monitors
Since build 2.0.157.37, FolderMonitor has had the ability to run multiple instances which thereby allows
one to achieve greater throughput, as jobs may be run simultaneously and make use of however many
CPUs your server is configured with.

Each monitor instance watches its own set of folders for incoming jobs. As usual, the first folder, in the list
of folders you configure a monitor to watch, gets the highest priority. All jobs in that folder must be
completed before the monitor will look at the next folder in the list of folders that you configured it to
watch. Note that if a job shows up in any higher priority folder than the one currently being processed then
as soon as the current job is done, processing will revert back to doing the jobs now found in higher
priority folders.

With multiple monitors, each monitor instance runs at the same priority, competing for system resources.
Each monitor instance must be configured to watch its own set of folders, not overlapping with any other
monitor's set of folders.

How does one get multiple monitors? Well ...

On unix...
It's easy, just start up more FolderMonitor programs to run independently of each other in the background.
Of course, each one you start must be given a parameter file (.prm) that is specific to the monitor's
business intent. It would define which folders were of interest to that monitor, what job name discovery
script to use, error file folder, processed file folder, ... – i.e. the usual.

On Windows...

One provides a DocOriginFolderMonitorSvc.prm file (in the usual .../User/Overrides folder) which
simply lists the names you wish to give to the monitor instances that you want to have. E.g.

-monitor Payroll:Manual
-monitor AdHoc:Automatic
-monitor LongJobs:Manual

Pick any names you like (even with spaces, but do you really want them?). Use as many as you like.

The Automatic or Manual attribute determines whether or not these monitor instances will be started up
automatically when the DocOriginFolderMonitorSVC service itself is started.

As of 3.1.002.03 multiple monitors can be configured with a single file: $O/
DocOriginFolderMonitor.ini
See FM.ini below. Of course, you can continue to use multiple .prm files as described immediately
below, if you like.

FolderMonitor | Multiple Monitors

page 94

The DocOriginFolderMonitorConsole can be used to start/stop any monitor (as chosen from a dropdown
list). Or to stop them all with one convenient GUI selection.

When directed to start a FolderMonitor instance, the service will launch the FolderMonitor app passing it a
parameter file name such as DocOriginFolderMonitorAdHoc.prm -- for the AdHoc named monitor that you
listed. It is your job to provide those .prm files, configured in the usual way for a FolderMonitor, i.e. defining
which folders it is to watch, the job name discovery script to use, etc.

That's it. As easy as that. Pick some names for the monitor instances you want and provide their
configuration details. Individual monitor start/stop control is easy with the
DocOriginFolderMonitorConsole.

FM.ini
(As of 3.1.002.03)

Larger installations that employ a fair number of FolderMonitor instances have found it inconvenient to
maintain several .prm files. So...

You can, if you like, configure all of the options for all of your monitors in a single ".ini" file. That file must
be deployed at $O/DocOriginFolderMonitor.ini. The existence of that file will mean that none of your
FolderMonitor-related .prm files, if they exist, will have any effect. They become unneeded and unused.
The .ini file says it all.

The .ini file is required to have sections. The section names would be the names of the monitor instances
that you would like to use. E.g. [AdHoc], [HiPri], [Payroll]. Note: Those names could have blanks in
them but that is probably a bad idea, especially if you intend to use a third-party INI editor to maintain
your .ini file.

Within each of those sections, you specify the options that you want to apply to that FolderMonitor
instance. E.g. scriptFolder=$O. Notice the lack of a leading dash and the need to use an = sign. Otherwise,
it is the same set of option specifications that you would have made in a .prm file.

As a major convenience, you can start out your .ini file with a section named [COMMON] . In that section,
you can specify default options that you wish to apply to all the FolderMonitor instances. You can, if you
like, respecify an option under an individual FolderMonitor instance section, so as to override the option
setting you placed under [COMMON].

In options queuen, ErrorFolder, and ProcessedFolder you can use the %i placeholder, which gets
substituted with the applicable FolderMonitor instance name.

For example, entries such as:

queue1=$U/FolderMonitor/%i/Jobs/*.*
ProcessedFolder=$U/FolderMonitor/%i/ProcessedJobs
ErrorFolder=$U/FolderMonitor/%i/FailedJobs

can be used in the [COMMON] section if you have standardized on your folder naming conventions across
your various FolderMonitor instances.

FolderMonitor | Multiple Monitors

page 95

You may include other custom sections with your own option settings. These will be ignored by built-in
FolderMonitor processing but may be advantageous to you if, as part of your processing, you used the
various _profile functions to load the.ini file and grab your user options from it.

How does FolderMonitor know which sections are FolderMonitor instance sections versus custom user
sections? Every FolderMonitor instance section, to be recognized as such, must have a
MonitorStart=Automatic/Manual entry. Yes, that's right, the.ini file replaces the
DocOriginFolderMonitorSvc.prm as well. The service will detect the.ini file and determine which
instances exist and whether to start them automatically or not.

Even FolderMonitor instance sections can have unknown-to-FolderMonitor user options in them. They will
be ignored. Of course, in doing that you run a risk that DocOrigin might invent an option name that
matches one that you have used. Beware.

Both a leading ; or * comment out a line. A third party 'Ini Editor' may have stricter rules.

FMTransaction

A DocOriginFolderMonitor instance doesn't actually process a job itself. It invokes an FMTransaction helper
app to process one job, then exit. It is that helper app that actually invokes the nominated job name
discovery script and deduced job processing script, which in turn probably invokes DocOrigin Merge and
may invoke filters as well.

The reason for using a spawned helper app is that it keeps the long-running DocOriginFolderMonitor
instance immune from the effects of [user] code that leaves file handles open or that leaks memory. Such
things are cleaned up by the OS when the helper app exits after doing one job.

This is purely for technical interest. It is not need-to-know information.

FolderMonitor | Installation

page 96

•
•

•

•

•

•

Installation
On Unix, FolderMonitor is installed automatically. On Windows, DocOrigin FolderMonitor is installed as a
separate step from the main DocOrigin installation. It is installed using the Microsoft installer by clicking on
the .../DO/Bin/FolderMonitorSetup.exe file provided as part of the install set.

Testing a new install
When FolderMonitor is installed it adds a default set of test forms (.xatw) and scripts in order to assist in
understanding how the system works. This setup also allows you to confirm that all components are
correctly installed.

The installation of FolderMonitor adds a Windows service called: DocOriginFolderMonitor.

IF YOU HAVE MADE NO (REPEAT NO) CHANGES IN THE FOLDERMONITOR CONFIGURATION FolderMonitor
and the Windows service can be tested by doing the following:

Start FolderMonitor Console from the desktop icon or the Start menu.
Once the FolderMonitor Console window is displayed, simply click on the Start FolderMonitor button. The
Windows service will be started and FolderMonitor will begin its scan of its queue folder(s). Several lines of text
will appear in the Log Messages window as the service starts the FolderMonitor instance(s) and they do their
initial processing.
Click on the Copy Test Files to Scan Folders button. This will copy two XML data files into the first queue folder.
This button has been dropped as of 3.0.004.05 since it was nearly certain to fail once you made adjustments to
your configuration. If you really have made no changes to the initial FolderMonitor installation and wish to do a
"proof of life" test, you can run the FolderMonitor-CopyDataFiles.bat command file that is supplied
under .../DO/Samples. It simply copies two shipped sample XML files to the standard jobs folder. Of course,
you could copy in any test files you like, but they should correlate to the Job Name Discovery and Job Processing
scripts that you have defined.
You should now see several additional lines appear in the Log file messages box showing that Merge has been
run and has processed those two data files.
Check the .../User/Output/PDF folder and you should see two new PDF files that were created by Merge
using the two data files copied to the queue folder.
If you now check the .../User/FolderMonitor/ProcessedFiles folder you should see the two data files
there, indicating that they have been processed by FolderMonitor.

The site-specific job name discovery script is to be placed, by you, in .../User/Overrides/
JobNameDiscovery.wjs. That file is referenced in the main discovery script file .../DO/Bin/Default-
JobNameDiscovery.wjs. You never edit files under the .../DO folder. Note that you can specify a different
script to be used as your Job Name Discovery script. See Job Name Discovery.

Similarly, you should copy the .../DO/Bin/Default-JobProcessing.wjs script to your .../User/
Overrides/Default-JobProcessing.wjs file, and edit it there according to any changes you wish to have in
the default processing of a job. Again, options are available to use alternate Job Processing scripts.
See Processing the Job.

FolderMonitor | Queues

page 97

Queues
FolderMonitor operates by monitoring one or more file folders - also known as Queues in this system.
Queues are examined in sequence - all jobs (data files) in Queue1 are processed first, then all in Queue2,
etc. After every job is processed the system returns to scan Queue1, then Queue2 etc. This allows you to
configure the system to have a High-Priory Queue (Queue1) and a Normal-Priority Queue (Queue2). Jobs
placed in Queue2 would be processed sequentially unless a job appeared in the higher priority Queue1.

For simple installations, only one Queue need be configured. You can configure up to 10 separate Queues
if you wish.

Jobs within a Queue are always processed in the order they were added to the Queue (i.e. date & time
order).

In some situations, files may be placed in a Queue that cannot be processed or opened by FolderMonitor.
In this case there is a Quarantine procedure that attempts to run the job at a later time. See the Error
Handling section below for details.

FolderMonitor | _job Script Object

page 98

•
•

•

•

_job Script Object
To facilitate the passing of various job settings to the Job Name Discovery step and the Job Processing step,
DocOriginFolderMonitor creates and maintains a JavaScript object called _job. You can access various job
settings using this _job object:

_job.name - is the current job name as determined by the Job discovery script. (readonly)
_job.datafile - is the full filename of the data file being processed. This can be used if you need to open or read
the file. (readonly)
_job.command.xx - provides access to the complete list of all DocOriginFolderMonitor command line settings.
(readonly)
_job.options.xx - provides access to the complete list of all the attributes that were provided on the <?
DocOrigin ... ?> processing instruction, if it was provided.

Command Line Option Access
For example, _job.command.logfile will have the value of the current logfile name.
job.command.scriptfolder will have the value of the -scriptFolder setting. etc.

As the –parm command line option can be used multiple times, the syntax for picking up the value of a
specific –parm option is as per the following example:

Processing Instruction Access
If your data file contains a DocOrigin processing instruction such as:

<?DocOrigin job="jobName" target="Printer23"?>

Then you could reference the target attribute or whatever attribute name was used in the processing
instruction via _job.options.target.

FYI: Though _job.options properties are transferred from a JND script or from the PI to your JPS, they are
NOT transferred into Merge when your JPS executes an _merge() call. In the above example, your form
script could not successfully reference _job.options.target ... or any other _job.options property.

In the command line: -parm=foo:bar
In the script: _job.command.Parmfoo (the P in Parm must be upper case).
It is highly recommended to use -cache rather than -parm.

FolderMonitor | Job Name Discovery

page 99

1.
2.
3.

4.
5.

Job Name Discovery
Once a file has been found in one of the FolderMonitor folders (Queues), FolderMonitor first must
determine what processing must be done on this particular file.
There are a few ways that FolderMonitor can do that. In priority order

Detect a DocOrigin PI containing only Merge-acceptable attributes (as of 3.1.002.03)
Detect a DocOrigin PI with a job= "JobName" attribute
Skip job name discovery completely and use the Job Processing script identified by a -JPSName
option (as of 3.1.002.03)
Use the Job Name Discovery script identified by the -script option
Default to using the $E/Default-JobNameDiscovery.wjs script (which may bring to bear an override
$O/JobNameDiscovery.wjs)

A common option is to run the JavaScript script defined in the -script command option to "discover" the
type of processing that should be done on the file. Like all script files, any job name discovery script (JND)
must be saved in UTF-8. This script must return a "job name" - a unique text name that will be used to
identify the job processing script to run on the file.

Sample discovery script:

var sData = _file.readfile(_job.datafile);
i = sData.indexOf("SalesTable");
if (i > -1) return "Table Sample - Nested Table";
i = sData.indexOf("CustomerInfo");
if (i > -1) return "Sample Invoice";
return ""; // No job name found. Send to Error Folder

The above script reads the contents of the data file, then searches for the keyword "SalesTable" in the file.
If this string appears in the file, the job name returned is "Table Sample - Nested Table". Similarly if the
keyword "CustomerInfo" is found, the job name becomes "Sample Invoice".

If no job name is found in the file (see The DocOrigin PI below) or by the job name discovery script, an error
is triggered and the data file is moved to the Error Folder (see Error Handling).

If a job name is returned, but no such Job Processing script exists, then the default Job Processing script
($E/Default-JobProcessing.wjs) will be run. If you wish to explicitly have the default Job Processing script
applied, have your JND return "_default_". As of 3.1.001.22 if the file jobname.wjs is not found in your
nominated script folder it will try the file jobname.jps. That is, the .jps extension can be used for Job
Processing scripts.

Note:
JND === Job Name Discovery
JPS === Job Processing Script

FolderMonitor | Job Name Discovery

page 100

The DocOrigin PI
One good practice, if you have influence in data stream creation, is to include a DocOrigin processing
instruction (PI) in the XML data. E.g.

<?DocOrigin job="aName" for="aGuy" printerTarget="aPrinter" outputFormat="aFormat"?>

If such a PI exists, then the JobNameDiscovery script won't even be invoked. The job attribute in the PI will
define the job name, i.e. will define which job processing script to run.

The other attributes, if any, on the PI will be conveniently placed in _job.options.name properties that
then become available to the job processing script. The attributes that you choose to put on the PI (aside
from job) are totally up to you.

Given the above example PI, the job processing script (aName.wjs) could refer to
_job.options.printerTarget, using its value in any way the script desires to affect the processing of the
job.

Quite convenient really.

Caveat: While the _job.options properties flow through from the JND (or DocOrigin PI) to the JPS, they do
not flow through to Merge (i.e. to script in your form design). Your JPS could transfer such information by
creating suitable -cache command line options for Merge to see.

Direct-to-Merge PI
As of 3.1.002.03, if the DocOrigin PI does not have a -job attribute and in fact all the attributes in the PI are
valid Merge command line options, then both Job Name Discovery and Job Processing scripts will not be
considered. Instead Merge, (and only Merge, not multiple steps), will be run directly using the options
specified as attributes in the DocOrigin PI. Surely you would specify the -form option at a minimum. This is
very direct with no chance for a script to peek at the job context. Perhaps it will suit your needs.

See Also

XmlFile Class -- the xfile.pi() function.

FolderMonitor | Processing the Job

page 101

Processing the Job
Once the job name has been established, a job processing script (JPS) is called to process the job. A file
called jobName.wjs is expected to be available in the "scriptFolder" (the -scriptFolder command line
option). Like all script files, any job processing script must be saved in UTF-8. This script is run to process
the data file. If the script is not found, an attempt is made to run a script called Default-
JobProcessing.wjs as found in the DO/Bin folder of the installation location. If this does not exist an error
is triggered.

The processing script is JavaScript that can use all the standard DocOrigin extensions. See Scripting for
details. In addition, the script has available to it the _job object with the job name and data file name set.
Your script can use these to read the file.

Also, the JND script (or a DocOrigin PI) can set properties in _job.options. These properties are available to
your JPS to use as it sees fit. Note though that these _job.options properties are NOT passed through to
Merge. Your form's script does not have access to _job.options properties. If you wish to transfer info to
Merge you should use the -cache command line option.

Sample Processing Script:

Default-JobProcessing.wjs

// without the extra comments
var args =
{}; // place to house Merge args
args.form = "$R/DO/Samples/" + _job.name + ".xatw"; // our default design file name
args.data = _job.datafile; // the data file we were given
args.output = "$U/Output/" + _job.name + ".pdf"; // our chosen, default, output
location

##include "$O/JobProcessing.wjs"

var rc = _merge(args); // run Merge

return rc;

The above example uses, by site convention, whatever job name is passed to it, as the name of the form
file (.xatw). The form file is expected to be in the samples folder such that the delivered samples work out-
of-the-box, but surely you will override that.

By defining your own override JobProcessing.wjs file you can override the parameters that are setup by
default to be passed to _merge(). In fact, you could ignore these parameters altogether, not even call
_merge(), and return before the default call to _merge() is executed. You have complete control; this is just
a stub.

FolderMonitor | Processing the Job

page 102

It runs DocOrigin Merge to create a PDF file of the same name. Merge's return code is returned to
FolderMonitor. If a non-zero return code came from Merge, FolderMonitor will log this as an error in
the ErrorFolder.

Note that all of this is for default processing. If you have defined a jobName.wjs file, then these default
processing steps won't be used at all. Rather it will execute the jobName.wjs file that you defined.

Once processing has completed, the file is removed from the active Queue. If the processing resulted in an
error return from the processing script, (a JavaScript return(n) where n is non-zero), or an error occurs in
the opening or compiling of the script, the job data file is moved to the Error folder specified by the
command line -errorFolder setting. Along with the original data file, there will be a .log file created with
the same base filename. It contains the last few lines of FolderMonitor's logfile. This file can be examined
to quickly determine the source of the failure.

We recommend that a client's JavaScript program uses a positive integer between 200 and 250. That way
you will always be able to tell whether the error was detected by your own JavaScript or by a DocOrigin
program.

If the processing runs successfully, the script should return a value of 0 (zero). The job is then deleted from
the Queue. If the optional -processedFolder option has been specified on the command line, or more
likely, in the DocOriginFolderMonitor.prm file, a copy of the processed data file will be written to that
folder.

FolderMonitor | Error Handling

page 103

Error Handling

Quarantined Files
When writing a file into one of FolderMonitor's Queues, it's possible that some error occurs which leaves
the file incorrectly closed. Or perhaps FolderMonitor attempts to open the file while it is still being written
into the Queue. In these situations, FolderMonitor makes multiple attempts to open the file. If after
numerous attempts to open the file over about a 20-second period of time, the file is still not opening, the
file gets put on a temporary Quarantine list. After any other queued jobs are processed, FolderMonitor
comes back to the Quarantine list and re-attempts to open the file. As long as it cannot be opened it
remains on the "Quarantine" list and is periodically checked again - up to a limit set by the QuarantineTime
command option (which defaults to 30 minutes).

If the file still cannot be opened after this QuarantineTime period has elapsed, an error message is logged
to the FolderMonitor logfile. Typically one would configure FolderMonitor to trigger an email alert to some
email address whenever errors are logged (see -alert). This allows someone to be alerted that a problem
exists. FolderMonitor will continue to attempt to open and run the file and re-issue the error every
QuarantineTime minutes.

To remedy the situation it is necessary to either cause the file to be completed and closed properly, or to
delete the file manually from the Queue.

Whenever FolderMonitor is shut down, a list of all Quarantined files is listed in the logfile.

To summarize - if a file cannot be read, FolderMonitor will repeatedly attempt to open the file. At regular
intervals, (after possible email alerts) errors will be logged. Other files in the Queues will also continue to
be processed normally.

Merge | Error Handling

page 104

•
•
•
•
•
•
•
•

•

•

Merge
At the heart of DocOrigin is the DocOrigin Merge application. It combines user forms and data to create
and output multi-page documents to PCL or PostScript® printers, a Windows printer, or PDF. Merge is a
Windows console application; it is a non-interactive process that can be called from a user application.
Merge can also run on some Unix platforms.

Merge provides a wide range of features:

Support for all TrueType fonts
Barcode support for UPC, EAN13, PDF417, 2 of 5, 3 of 9, QR, and DataMatrix
Full word wrap and data justification
Dynamic resizing of fields and tables
Output in color or monochrome
Scripting in JavaScript.
Embedding of field values in text labels (Dear [FirstName]), and in dynamic output file names.
RTF (Rich Text Format) support for bolding, italicization, underlining, typeface selection, point size selection,
color selection, hyperlinks, plus embedding of field values. The RTF may be pulled in from an external file.
Pagination with headers and footers plus "widows and orphans" control, also, as of 3.0.003.20, multi-column
output with column headers and footers, and dynamic balancing of column length.
Embedding of fonts in PDF and PCL. Font embedding is not supported for PostScript, of course fonts can be
downloaded to a PostScript printer outside of DocOrigin, and then be used as "resident" fonts.

When Merge is called, a number of options are passed to the application either on the command line or via
a command file. These options direct the input, output and processing activities of Merge for the current
job. From the command line options, Merge determines the configuration, the form and data files to use,
and when appropriate, it may be directed to use a translated set of its error messages. Merge combines
the data and form to create output documents, and records its activity for the job including any errors to a
log file.

Merge

Merge | Merge Command Options

page 105

Merge Command Options
Merge is invoked with a command line with a number of options that control its operation. The list of those
options is provided in the menu on the right-hand side of this page.

As with other DocOrigin commands, it also uses a common set of command line features described in the
Common Command Line Options section.

See Also

Common Command Line Options Command Line Processing Indirect Parameter Files

Merge | Merge Command Options

page 106

-appendPages
Change where pages are added when a container overflows.

Syntax
-appendPages

Description
When the process of merging the data with the form design is finished, many containers can be
overflowing with instantiated panes. The pagination algorithm has the task of splitting such overflowed
containers into pages. Normally those pages are inserted in the output right after the overflowing page.
When the -appendPages option is specified, the overflow pages will be added to the end of all existing
pages.
By the time the pagination algorithm begins, all mandatory pages will have been instantiated, regardless of
whether their containers are over-full or not. One instance per mandatory page. Now each of the pages (or
layouts), per the order of definition in Design, will be examined, overflow conditions will be detected and
additional pages will be added as necessary. This -appendPages option simply defines where those pages
will be added.
Suppose you had three-page layouts brilliantly named as Layout1, Layout2 and Layout3. Suppose they
were all mandatory, and also that there was enough data that flowed into Layout1" that three instances of
it (or of it and its designated overflow layout) were required. The result...

Normal -appendPages

Layout1-a Layout1-a

Layout1-b Layout2

Layout1-c Layout3

Layout2 Layout1-b

Layout3 Layout1-c

See Also

Pagination

Merge | Merge Command Options

page 107

•

•
•

-attachment
(Merge only) (As of 3.1.001.25)

Attach a file to the generated PDF output.

Syntax
-attachment filename [; description]

The textual description is optional. If present, it will be displayed in pdf viewers such as Acrobat.

Description
For every document in the job PDF attachments list is reinitialized from -attachment options if any is set.
Then this PDF attachments list is shared through all output configurations (drivers) defined.
Multiple -attachment commands may be used to attach several files. Example:

-attachment "C:/DocOrigin/User/Forms/myfile.txt;This is a sample description"

-attachment "$$F/anotherfile.txt;This is another file."

Scripting
(Merge only) (Added in 3.1.002.01)

There are such script functions to manage PDF attachments from script:

_printer.addPDFAttachment(name [, description]) - add an attachment to PDF attachments list for current
document
_printer.clearPDFAttachments() - clear the list of PDF attachments for current document
_printer.resetPDFAttachments() - init PDF attachments list from command line -attachment options for
current document

See Also

_printer - output configuration settings

Note that some of these functions make more sense on start next print driver event.

Merge | Merge Command Options

page 108

•
•
•
•
•
•
•
•
•
•
•
•

-blend
Blend mode for PDF transparency.

-blend optionValue

Possible values are:
Normal - Selects the source color, ignoring the backdrop.
Multiply - Multiplies the backdrop and source color values.
Screen - Multiplies the complements of the backdrop and source color values, then complements the result.
Overlay - Multiplies or screens the colors, depending on the backdrop color value.
Darken - Selects the darker of the backdrop and source colors.
Lighten - Selects the lighter of the backdrop and source colors.
ColorDodge - Brightens the backdrop color to reflect the source color.
ColorBurn - Darkens the backdrop color to reflect the source color.
HardLight - Multiplies or screens the colors, depending on the source color value.
SoftLight - Darkens or lightens the colors, depending on the source color value.
Difference - Subtracts the darker of the two constituent colors from the lighter color.
Exclusion - Produces an effect similar to that of the Difference mode but lower in contrast.

Default is Multiply.

Normal is recommended for transparent images.

Printer Configuration File
You can define the color blending in the Printer Configuration File (PRT). For example:

<!-- <Blend>Normal</Blend> -->

See Also

See "PDF Blend Modes: Addendum" document for details.

For sample collateral, see Transparent Color Image Support in the User Guide. Login Required.

Merge | Merge Command Options

page 109

-config
This Merge command line option identifies the output configuration file to use.

Syntax
-config filename

Description
Identify the output configuration file (.prt) used by Merge, which specifies information such as available
fonts, page sizes, and printer driver(s). This is a mandatory command line option. Yes, mandatory, but it is
quite likely to have been defined for you in the Default-Merge.prm file.

See Also

Command Line Processing

Merge | Merge Command Options

page 110

-createData
Ask Merge to generate sample data (aka autodata) for the nominated form, and then exit.

Syntax
-createData output filename

Description
Request that Merge generate sample data for a form design.

The output would be the same output one would get in Design in PDF Preview when using the Auto-
generate test data option and hitting Save Data.

After producing the data, Merge exits. It does not immediately merge that data with the form to produce a
document.

This data might be used as sample XML for a FilterEditor definition.

Merge | Merge Command Options

page 111

-data
Identify the data file to be merged with the form.

Syntax
-data filename

Description
Identify the data file to be merged with the form. This is a mandatory command line option.

See Also

Command Line Processing

Merge | Merge Command Options

page 112

-documentTag
Specify an XML tag used to delimit the data for a single document. The default value is "Document".

Syntax
-documentTag xmltag

Description
We expect that data files will often contain data for multiple documents. There must be an opening and
closing pair of tags around each document in the data file. For example, for an xmltag of "Employee", the
data file should look like:

 <Data>
 <Employee>
 ...
 </Employee>

 <Employee>
 ...
 </Employee>
 ...
 </Data>

Note that the root tag name Data is just an example. That tag may have any name. Often we use <XmlData>.
If your data file looked like the above you would specify the Merge command line option:

-documentTag Employee

Our typical, and default, document separator tag is <Document>...</Document>.

The xmltag can also be a number, usually the value 1 or the value 2. The value 1 tells Merge to use
whatever the root tag is as the document tag. Clearly, there could be only one document in such an XML
file. A value of 2, tells Merge to use the second tag in the XML file, the one after the root tag, as the
document separator tag. For example, the XML file above could be processed by using a command line
option of:

-documentTag 2

As Employee is the second tag in, that is equivalent to -documentTag Employee.

See Also

Command Line Processing

Merge | Merge Command Options

page 113

•
•

-dumpLevel
Dump internal data values at various stages of the Merge process.

Syntax
-dumpLevel level

Description
Dump internal data values at various stages of the Merge process.

level may be specified as either short or full.

Specifying short displays only a couple of files.
Specifying full causes a dump of all intermediate files.

The files are written to the foldername specified by -dumppath.

See Also

Command Line Processing

Merge | Merge Command Options

page 114

-dumpPath
Identify to the dump routine the folder into which the debug or dump information is written.

Syntax
-dumpPath foldername

Description
Identify to the dump routine the folder into which the debug or dump information is written.

foldername must be an existing folder name.

See Also

Command Line Processing

Merge | Merge Command Options

page 115

-dumpTimes
Write out the internal timing information captured during program execution.

Syntax
-dumpTimes

Description
Write a file called times.txt that captures the internal timing information at various stages of program
execution.

The file is written to the foldername specified by -dumppath.

See Also

Command Line Processing

Merge | Merge Command Options

page 116

•
•
•
•
•

-duplex
(Merge only) (As of 3.0.003.13)

Specify a duplexing option

Syntax
-duplex option

Description
Specify a duplexing option may be one of:

form - indicates to use the duplex settings that were set in the form. This is the default.
top - indicates to print the form duplexed with top-binding no matter what is set in the form.
left - indicates to print the form duplexed with left-binding no matter what is set in the form.
right - indicates to print the form duplexed with right-binding no matter what is set in the form.
simplex - indicates to print the form as simplex (one-sided) no matter what is set in the form.

In an output configuration file (.prt), the option is specified in the format:

<Duplex>form</Duplex>

when multiple configuration files are in use, or anytime, it is wise to prefix the option name with the printer
type. E.g. -PDFDuplex simplex

On the command line, options are case-insensitive.

See Also

Command Line Processing

Merge | Merge Command Options

page 117

-ellipsis
(Merge only)

Specify the character to use for the ellipsis mark.

Syntax
-ellipsis character-in-hex or Y/N

Description
When a single line field overflows, Merge automatically supplies an ellipsis (…) character at the end of the
amount of text that does fit into the space available. The character that is used by default is Unicode
0x2026. You can change that character by using this -ellipsis option. For example, if you wanted to see a
plus sign (+), add the hex 2B.

-ellipsis 2B

(As of 3.2.001.12), the option for Y/N is available. Y uses the default symbol of an ellipsis mark. And the N
simply truncates the content with no symbol.

-ellipsis N

(Prior to 3.2.001.12) If you wanted to not see the ellipsis, you could specify it as the blank character
codepoint -- hex 20.

-ellipsis 20

Merge | Merge Command Options

page 118

-embeddedDefault
Specify a replacement string for embedded fields that exist on the form but not found in the data.

Syntax
-embeddedDefault replacementString

Description
If the data field is not found but is used as an embedded field then it doesn't get replaced. With this option,
you may specify the default replacement string. If replacementString is missing then an empty string is
used for replacement.

First use-case: for example such label "EMAIL: \[EMAIL\]" remain unchanged if no EMAIL found in the
data. If you want to get something like "EMAIL: " instead, you may supply Merge with "-embeddedDefault
" option.

Second use-case: you may want to check if all required fields are present in the data, so you may specify
something like "embeddedDefault """, run Merge and then search output for "" string.

Merge | Merge Command Options

page 119

-embedjpg
(Merge only, PDF output only)

Embed the JPG graphic file as is. If set to 'Y', Merge does not resize the image to fit the area into which it is
to be rendered.

Syntax
-embedjpg Y/N

Description
Control whether JPG files are embedded as is or pre-rendered to a raster applicable to the rendering area
size. The default setting is N.

This may result in smaller PDFs, or it may result in larger PDFs. It all depends on the image, its JPG encoding
flavour, JPG compression, and resolution.

Users should strive to pre-convert their images to the size and resolution that is required, and more likely,
to choose the PNG format.

Note, embedding doesn't happen if the image doesn't fit the area. For example, a rectangular image
rotated to 0 or 180 degrees may be embedded, but for 90 or 270 degrees embedding will be ignored.
However, even for 180 degrees image is not going to be rotated.

Merge | Merge Command Options

page 120

-embedPlainTextAsRtf
(As of 3.2.001.01)

Syntax
-embedPlainTextAsRtf Yes/No

Description
Controls whether should be automatically converted to \line (new line) when embedding plain text into
RTF. The default value is No (no conversion).

Merge | Merge Command Options

page 121

-emptyNodeInstantiatePane
(As of 3.2.001.06)

An option to not instantiate a pane if there are no child fields.

Syntax
-emptyNodeInstantiatePane Y/N

Description
Set this option to N to not instantiate a pane if the corresponding data node has no data and no children or
no data and all children are empty. The default setting is Y, i.e. do instantiate.

Merge | Merge Command Options

page 122

•
•

•

-filter
Convert incoming data to Merge-compatible XML format.

Syntax
-filter "filterName filterOption1 Option1Value filterOption2 Option2Value ..."

or

-filter "filterName filterOption1=Option1Value filterOption2=Option2Value ..."

A filter can, itself, have many parameters. These parameters need to be shown as separate from the rest of
the Merge parameters. Think of the entire filter name and its parameters as a single parameter to Merge –
that is what it is. To accomplish that, the entire filter name and its parameters must be enclosed in quotes
("). Within that set of double quotes, there may be filter option values that have special characters. Such
filter option values need to be surrounded by single quotes (').

As usual, one can choose to put equal signs (=) between name and value operands. Note that the equal
sign itself is a special character.

Much of the quoting difficulty can be eliminated by using parameter (.prm) files which are not subject to
the whims of various command line interpreters.

Description
Typically used to convert incoming data to Merge-compatible XML format. Filters are also used to sort
incoming XML into a new order. Another filter could be used to combine several forms into one form for
use in the Merge process.

filterName is the name of a program or JavaScript file that is invoked by Merge to convert the data.

If filterName has a .exe extension or has no extension at all, an external (custom) converter is called.
If filterName has an extension of xfilter then the built-in DocOriginFilterProcessor.wjsinc conversion
facility is used to process the data stream according to the rules you defined via Filter Editor to create the
xfilter file.
Otherwise filterName is assumed to be a file containing JavaScript that will convert the data. (Typically these
have a .wjs extension.)

When filterName is not a fully qualified file name, it is assumed to be relative to the folder containing
Merge.

filterOption# is an option name that pertains to the filterName being used.

Option#Value is the value for the preceding filterOption#. The value will have to be surrounded in single
quotes if it contains blanks or other special characters.

Examples
-filter "ConvertDatToXml -split '^field AccountNo'"

Merge | Merge Command Options

page 123

-filter "uconv -f cp1252 -t utf-8 -o %out %in"

-filter "DocumentSort -keyname Document.InvoiceHeader.CustomerID -keyname CustomerPO

-sortOrder=D"

Multiple Filters
It is possible to specify multiple -filter options for a single Merge command line invocation. These filters
will be run one after the other in the order in which they are specified on the command line, or more likely,
in a .prm file.

Third-Party Filters
It is possible that an existing executable can be used as a filter. However, it is unlikely that it will expect
parameters in a style such as -in filename and -out fileName. When defining the command line
parameters for these third-party filters you can supply %in and %out as placeholders for the file names to
be used for the filter. Merge will supply those names in a way that is applicable and suitable for chaining
multiple filters in a row. See the uconv example above. If you supply neither %in nor %out then Merge will
automatically affix -in fileNameIn and -out fileNameOut to the end of the provided command line.

Normally Merge expects executable filters to be in $E (i.e. DO/Bin). For third-party filters, you will need to
specify the applicable path and file name.

See Also

Merge Filters

Merge | Merge Command Options

page 124

-filterOutput
Save a copy of the xml data after all filters have been run.

Syntax
-filterOutput filename

Description
Used when the -filter option has been specified. This command will save a copy of the output xml code
created by the filter conversion to the filename specified. This can be useful for testing and debugging filter
logic.

When multiple filters are in use, it is the output from the last one in the chain that will be left in the file
specified here.

See Also

Merge Filters

Merge | Merge Command Options

page 125

-filterParm

This was used to specify additional parameters to a single filter. Now that multiple filters are supported,
the use of -filterParm is meaningless.

Syntax
-filterParm parameters

Description
This is used when the -filter setting has specified an external executable (non-script) filter program to be
run. parameters is any additional command-line parameters you wish to pass to the filter program.

See Also

-filter Merge Filters

Deprecated - do not use

Merge | Merge Command Options

page 126

-form
Specify the form or forms to be used in the Merge.

Syntax
-form filename

Description
Specify the form design file (.xatw) to be merged with the data. This is a mandatory Merge command line
option.

Although it is possible to dynamically set the form file when using the -filter option, the -form parameter
must still be present (but may be overridden).

Multiple forms may be specified by separating them with semicolons. They will be automatically combined
into a single temporary form into which the data is then merged. All pages of all forms specified will be
appended in the order the files are listed on the -form list. When using multiple form files care should be
taken to ensure that page names and pane names are unique across the entire set of forms.

If the second and subsequent files are specified without a file path, the path of the first file will be
assumed. E.g.

-form C:/DocOrigin/User/Forms/one.xatw;two;three.xatw;C:/four.xatw;five

will combine the 5 forms.

C:/DocOrigin/User/Forms/one.xatw
C:/DocOrigin/User/Forms/two.xatw
C:/DocOrigin/User/Forms/three.xatw
C:/four.xatw
C:/five.xatw

Merge | Merge Command Options

page 127

-fragmentAutoResolve
(Merge only)

Resolve linked fragments.

Syntax
-fragmentAutoResolve Y/N

See Also

Fragments

Merge | Merge Command Options

page 128

-HighlightURL
This option provides control over the display of hyperlinks.

Syntax
-HighlightURL Y/N

Description
This option provides control over the display of hyperlinks that are created in a PDF when an email or URL
format is detected. The default for this option is Y.

Also available as Printer Configuration Option: N

A URL such as a website www.EclipseCorp.US or email info@EclipseCorp.US with the default option of
-HighlightURL=Y will show as follows:

and the -HighlightURL=N will show as follows:

Note: The hyperlink is still active in both settings.

Script option
If you wish to suppress the hyperlink, try adding the following script to the field or text label that contains a
URL link or email address, the string will be shown without the link formatting.

this._value = this._value.replace('.',String.fromCharCode(0x0008) + '.');

 Note: This option is not functional for all fonts.

mailto:info@EclipseCorp.US

Merge | Merge Command Options

page 129

-htmTemplate
Specify an alternative HTMLTemplate.htm file

Syntax

-htmTemplate yourHtmlTemplate.htm

Description
This lets you provide your own HTML Template file instead of using the supplied Default-
DOHtmlTemplate.htm that is installed in .../DO/Bin.

Obviously, this applies only when you are generating HTML output.

The big bonus here is that you can include JavaScript or CSS or whatever you like as befits your
organization's standards. You might include the JQuery tool set. Or perhaps some generic JavaScript
functions for use in your browser JavaScript scripts.

No doubt you will copy the standard .../DO/Bin/Default-DOHtmlTemplate.htm, likely to your overrides
folder, say as .../User/Overrides/HtmlTemplate.htm. Edit it. Then in your Merge command line, or in
your Merge.prm file you could code the option as follows:

-htmTemplate $O/HTMLTemplate.htm

See Also

Fillable Forms

Merge | Merge Command Options

page 130

1.
2.
3.
4.

-imagePath
(As of 3.1.002.06)

Specify the locations where Merge should look for image files. It is also used for locating text resources.

Syntax
-imagePath foldername [;foldername2...]

Description
Specify the folders where Merge is to look for image files identified in the data stream or via script settings.
If your Form design defines a Field with a Display As type of Image, then the data found for such a Field is
expected to be a file name. That image file name may or may not be fully qualified.

foldername, foldername2, ... identify the locations where the image files may reside.

When Merge is looking for a referenced image file it tries to find it in multiple ways. The algorithm used
depends on whether the reference is for a field or for a label. It also depends on the type of image file
name specification.

There are 4 types of image file references:

Absolute L:\BigImageBin\Logo.jpg
Relative: ./subsidiary/A/B/C/Logo.jpg (with or without the ./)
Naked: Logo.jpg
http[s]://–..Logo.jpg (This quickly turns into a temp file name, and thus a case 1).

An example of a common -imagePath specification is:

-imagePath $$F;$U/Images

BTW: Using . in the -imagePath is not recommended. It is meaningless. You really don't know what the
current directory will be at the time that image selection is called upon.

Similarly, using $$D is frowned upon since a filtering operation may be performed independently before
Merge is run and thus the data file that Merge processes is actually in the "temp" folder. You can use $$D
but you are at risk.

As of 3.1.002.06
As of 3.1.002.06, we have attempted to make image file selection more definitive or at least more
definitively explained.

Note that while the option name is -imagePath (for historical reasons), it is actually resource path.
That is, references like [@[path/]message.rtf] follow the algorithm set out below.

Merge | Merge Command Options

page 131

1.
2.

3.

1.
2.

3.

4.

1.
2.
3.

1.

2.
a.

b.

Fields
If the image file specification contains an absolute path:

Try it as is, if found, use it
Strip all pathing off; get down to a leaf file name and extension.
We strip off all pathing since the data stream may have been for an old Central system or for dev/
test vs prod. Setting the -imagePath properly will overcome these situations.
Append that leaf file name to each element of the imagePath, if found, use it.
Not found – Issue an error message, identifying the field, and image. Note that only one error
message will be issued per failing image file spec, regardless of how many times that same failing
spec occurs in the run.

If the image file specification contains a relative path:

DO NOT try it as is. The user has no believable concept of what the current directory is.
Append that relative path to each element of the imagePath, if found use it (e.g. we want it to find
$U/Images/./subsidiary/A/B/C/Logo.jpg)
Strip all pathing off; get down to a leaf file name and extension. Append that leaf file name to each
element of the -imagePath, if found, use it
Not found – Issue an error message, identifying the field, and image.

If the image file specification is a naked name:

DO NOT try it as is. The user has no believable concept of what the current directory is.
Append that leaf file name to each element of the imagePath, if found, use it
Not found – Issue an error message, identifying the field, and image.

Labels
Typically label images are defined at Design time and remain static. The actual image is stored in the XATW
and an _imageName property relates all instances of the image label to its stored image data.

However, a user could use script this._imageName = "[pathing/]xxxx.yy";. In which case, Merge must
effect a correlation between the dynamically assigned _imageName and actual image data.

If there is an exact (case sensitive) full name match to any of the names in the XATW, we use it -
we're done. This is expected to take care of 99.992% of the cases.
If scripting has occurred such that the above fails to find an exact match, then:

Follow the same process as for fields for absolute paths and relative paths. -imagePath
applies.
For naked names, look in the XATW for imageData names that end in that naked name. Partial
paths are not considered. The matching is case-sensitive, even on Windows.

Note that we never look in the XATW to resolve a field's image name.
If you really wanted to do that you could use a dynamic (scripted) label, setting its _imageName to
the value of an [invisible] field.

Merge | Merge Command Options

page 132

c.
d.

1.
2.
3.

1.

2.
3.

If not found yet, use the naked name as per the processing of a Field. -imagePath applies.
Not found -- Issue an error message identifying the field and _imageName.

Note to Linux users. The Design tool is Windows-only and hence the image file paths that are browsed to
will have Windows syntax. If you wish to refer to them via scripting be sure to use that Windows syntax to
effect a match. BTW, you are in the .008% (or less) club.

Prior to 3.1.002.06
If the object being processed is a field or -preferImages is set to fromDisk the search order becomes:

Look for a file on disk with the exact name specified in the data file
Look for the file in each folder specified in -imagePath for the image file
Look in the list of embedded images in the form file for the image file (only the file name and
extension count)

Otherwise, the search order becomes:

Look in the list of embedded images in the form file for the image file (only the file name and
extension is considered)
Look for a file on disk with the exact name specified in the data file
Look for the file in each folder specified in -imagePath for the image file

See Also

-preferImages HTML Image Embedding

(Independent of version)
Once images are found, their location is remembered such that subsequent references do not
have to go through the search again.

(Independent of version)
For HTML Image Embedding inside the HTML body of an email message the _sendmail option to
use is -cidFolder. The -imagePath option is not applicable to embedding images in an HTML
message body.

https://docs.docorigin.com/reference-manual/scripting/script-functions/_sendmail#:~:text=rather%20than%20immediately.-,HTML%20Image%20Embedding,-When%20you%20have
https://docs.docorigin.com/reference-manual/scripting/script-functions/_sendmail#:~:text=rather%20than%20immediately.-,HTML%20Image%20Embedding,-When%20you%20have

Merge | Merge Command Options

page 133

-inputDataType
(As of 3.2.001.01)

Instructs Merge what type of input data to expect.

Syntax
-inputDataType type

Description
Specify an input data type for Merge. This command option overwrites the assumption of the data type
based on the file name extension. If this command option is not set, .fnf and .dat files are treated as Field
Nominated Data and .xml files are treated as XML.

type may be one of: XML, FNF, XFDF, or JSON

Merge | Merge Command Options

page 134

-inputDateFormat
This Merge command line option identifies the format of Date data to expect from the input xml data
stream.

Syntax
-inputDateFormat format [;format2...]

Description
This command option applies only when dates are to be recognized and re-formatted by Merge. The
option is applied only to form Fields which are flagged with "Format as Date". If your data stream has
already pre-formatted the date and it requires no additional formatting the Field should NOT be marked as
a Date field, but rather a normal Text Field.

When the "Format as Date" option is selected the -inputDateFormat option will cause the data to be
matched to one of the supplied formats and converted to the standard internal Merge date format of
yymmdd. The Merge date formatting can then re-format based on whatever date format you have
requested in Design and produce the required output.

The parameter to the -inputDateFormat command is a list of one or more date formats, separated by a
semicolon. Example:

-inputDateFormat mmddyyyy;yyyy-mm-dd

This would expect data stream dates in either mmddyyyy format or yyyy-mm-dd format. If dates are found
that do not match either format, a warning message is issued into the log file.

This command recognizes only yy, yyyy, dd, or mm as valid date designators.

See Also

Command Line Processing

Merge | Merge Command Options

page 135

-inputTray
(Merge only) (As of 3.0.002.05)

Override the default input tray defined in the form properties.

Syntax
-inputTray trayId

Description
The Form Properties dialog allows you to set an input tray to be used. Using this command line option
allows you to override that setting at Merge run time. Note that the Page Properties dialog allows you to
set the input tray for each page layout, however most often that is left to the setting "Leave setting
currently in effect". It is those pages that may be affected by setting this default, form level, input tray
setting.

Of course, this can also be overridden by script on objects and in fact is identical to saying
this._inputTray = _1001; in the form object script.

trayId must be one of the numerical identifiers defined in the applicable .prt (printer configuration file),
for input trays. Typical values are 1001, 1007, ...

Merge | Merge Command Options

page 136

-language
(As of 3.2.001.01)

Specify how the language is determined using the Auto Translate feature.

Syntax
-language key

Description
-language FR

Indicates that the [FR] section of the translate .ini file should be used for all translations.

-language [LANG]

Indicates that the current value of Field LANG on the Form will contain the section name to be used.

-language "[!Data LANG]"

Indicates that the current value of the data field LANG (in the actual data file) will contain the section name
to be used. This option allows the LANG value to be accessed without adding a separate (and probably
invisible) field on the form.

See Also

Auto Translate -translate

See Sample in User Guide (User Login Required)

Auto Translate Sample Collateral

https://docs.docorigin.com/design/feature-examples/auto-translate

Merge | Merge Command Options

page 137

•
•
•
•

-lineBreak
(As of 3.2.001.09)

Specify a line break algorithm.

Syntax
-lineBreak option

Description
There are four options. Most likely only options 1 and 2 will be used. Options 0 and 3 are mostly for tests.

Option 1 is the current default behavior. Option 2 is a Microsoft Word-like line wrap.

0 - old original DocOrigin algorithm, no ICU involved
1 - current default ICU-driven algorithm - breaks on some dashes and some punctuations
2 - MS Word-like line break algorithm which breaks on all dashes and doesn't on punctuation
3 - mixed ICU and MS Word-like line break algorithm which breaks on some dashes (ICU doesn't break between
minus and digit) and doesn't on punctuation

If the user wants this behavior for both Design and Merge then they can add this option to DocOrigin.prm.

See Also

Command Line Processing

Merge | Merge Command Options

page 138

-lj4BoundFont
Indicate whether a target PCL printer supports unbound or only bound fonts.

Syntax
-lj4BoundFont Yes/No

or often in the relevant .prt file as

<BoundFont>Yes</BoundFont> or No

Description
The PCL reference manual says:

In DocOrigin terms, a "bound font" is a PCL font that spans only a single PCL symbol set (up to 256
characters). This is determined at Merge time – essentially hard-coded into the font that is sent to the
printer. A further limitation (a DocOrigin limitation) is that we always include the first 128 ASCII characters
in this count, so in fact, the DocOrigin limit is 128 "extended characters".

An 'unbound font' allows any number of characters in the font (so, greater than 256).

In practice, this means that most English and European languages can be downloaded as either bound or
unbound (because there tends to be less than 128 non-ASCII characters involved). But Asian languages
such as Chinese are probably limited to being unbound fonts as most forms are going to use more than
128 Chinese glyphs (characters).

Why does this all matter?
By default, most DocOrigin supplied .prt files use unbound fonts. But there are some PCL printers that do
NOT support unbound fonts. So when printing to those printers you must tell the DocOrigin PCL driver to
use 'bound fonts'. Many printers such as the HP laser printers tend to support either.

Generally, unbound fonts are used by the default DocOrigin prt output configurations. You can change that
by setting the <BoundFont>Yes</BoundFont> option in a custom DocOrigin .prt file, or via the command
line override of -LJ4BoundFont Yes option.

vs -useBuiltinSS
The -usebuiltinss=Yes option tells us to believe that the target printer has the standard symbolsets that
are built into DocOrigin via the Default-DOPclSymbolSets.ss file. By saying yes, DocOrigin doesn't have to
download the symbolset mapping tables, so the PCL is a bit smaller and tighter. Our default .ss file has the

"The terms 'bound' and 'unbound' refer to the symbol set capacity of a font. A bound font
identifies a font which is restricted (bound) to a single symbol set. An unbound font (or unbound
typeface) indicates the capacity to be bound a set of symbols selected from a complementary
symbol index (such as the Master Symbol List, or the Unicode symbol index."

Merge | Merge Command Options

page 139

basic symbolsets that are defined in the PCL spec, so they all should be in the printer – but who knows with
some of the quasi-clones.

With a Bound font the symbolset is built into the download font info, so the symbolset and its font info
come as a "bound" -lj4BoundFont set. With unbound fonts, the font itself has no symbolset info, just a
bunch of Unicode characters. DocOrigin has to supply a symbolset to map 0-255 into those Unicode
characters.

See Also

-useBuiltinSS

Merge | Merge Command Options

page 140

-mergeCaseSensitive
(As of 3.3.001.01)

Allow the Data and Form DOM case to be sensitive or insensitive.

Syntax
-mergeCaseSensitive Yes/No

Description
This option should only be used if there is a case mismatch between the Data DOM and the Form DOM.
This is not uncommon for customers transitioning from Adobe Output since the Field Nominated Data file
and form fields were case-insensitive. By default, this option is YES since the XML tags are case-sensitive. In
the Design application, case mismatch can be corrected by simply dragging the field from the Data Explorer
to the targetted form field in the workspace. We recommend correcting the case if your data is static and
the number of forms being converted is manageable. However, if you are pulling data from multiple
systems and the case is inconsistent, then -mergeCaseSensitive No should be used. Or, if you are
converted 100s of forms, this option can be used.

Note: objects that are case mismatched will not show as mapped objects (bold purple) in the Data
Explorer.

Case Mismatch Case Match

Form Explorer Data Explorer Form Explorer Data Explorer

Merge | Merge Command Options

page 141

•

•

•

-mode
(Merge only)

For PDF output, generate files in PDF/A (Archive format), or PDF/UA (Accessibility format).

Syntax
-mode {PDF/A} | {PDF/A-1} | {PDF/A-1b} | PDF/UA} | {PDF/A-3} | {PDF/A-3b}

Description
These modes cause all fonts to be embedded in the PDF file, so files will likely be larger.

These options may be necessary for compliance with certain standards. Many of the PDF/A and PDF/UA
requirements additionally require that the form be designed or tagged in a specific way. That must be done
and verified by the form designer.

-mode PDF/A creates a PDF/A compliant output document (Archive format).

Equivalent to PDF/A-1 and PDF/A-1b.

-mode PDF/A-3 or PDF/A-3b are base PDF/A compliant and allow embedded/included files as well.

Use the Merge -attachment option to attach files.

-mode PDF/UA (as of 3.0.003.22) creates a PDF/UA compliant document (Accessibility format).

Form objects that do not have an explicit TagAs setting will be automatically tagged.

See Also

-attachment

The PDF/UA accessibility format feature is available under only specific licensing arrangements.
Modes PDF/A-1, PDF/A-1b, PDF/A-3, and PDF/A-3b became available as of 3.1.001.25.

Merge | Merge Command Options

page 142

-numCopies
(Merge only)

Set the number of copies of the document to output.

Syntax
-numCopies copies

Description
Set the number of copies of the document to output.

Merge | Merge Command Options

page 143

•

-output
Specify the location where the document output will be written.

Syntax
-output filename

Description
Specify the location where the document output will be written, either a path/file name, a physical device
such as LPT1:, or a network path. Note that the filename may include placeholders for various date-time-
related elements, and also for dynamic field values.

The output location can also be specified dynamically using the printer.setOutputFile() function, most
typically in the Start next Print Driver event script for a form object.

Further, the output location can be defined in the <Outputfile> tag of the printer configuration file (.prt).

For the Windows driver (provided with Merge), setting filename to:

"Select" will cause Merge to prompt for a printer

For more details see _printer.setOutputFile() function.

See Also

File Naming Conventions _printer

Merge | Merge Command Options

page 144

-outputBin
(Merge only) (As of 3.0.002.05)

Override the default output bin defined in the form properties.

Syntax
-outputBin binId

Description
The Form Properties dialog allows you to set an output bin to be used. Using this command line option
allows you to override that setting at Merge run time. Note that the Page Properties dialog allows you to
set the output bin for each page layout, however most often that is left to the setting "Leave setting
currently in effect". It is those pages that may be affected by setting this default, form level, output bin
setting.

Of course this can also be overridden by script on objects and in fact is identical to saying this._outputBin
= _1001{_}; in the form object script.

binId must be one of the numerical identifiers defined in the applicable .prt (printer configuration file) for
output bins. Typical values are 1001, 1002, ...

Merge | Merge Command Options

page 145

-paginate
Merge only, HTML output only
Control whether Merge creates multiple pages (shown as tabs) of HTML or produces a (possibly) long single
page.

Syntax
-paginate Y/N

Description
Control whether Merge creates multiple pages (shown as tabs) of HTML or produces a (possibly) long single
page. The default setting is "Y", i.e. to create multiple pages.

Note that it is -paginate not -HTMpaginate.

If you were to apply it to non-HTML output you wouldn't like the result. The page will simply overflow and
be lost. This feature is for HTML only!

Merge | Merge Command Options

page 146

-paperType
(Merge only) (As of 3.0.002.05)

Override the default paper type defined in the form properties.

Syntax
-paperType paperTypeId

Description
The Form Properties dialog allows you to set a paper type to be used. Using this command line option
allows you to override that setting at Merge run time. Note that the Page Properties dialog allows you to
set the paper type for each page layout, however most often that is left to the setting "Leave setting
currently in effect". It is those pages that may be affected by setting this default, form level, paper type
setting.

Of course, this can also be overridden by script on objects and in fact is identical to saying
this._paperType = _1001{_}; in the form object script.

paperTypeId must be one of the numerical identifiers defined in the applicable .prt (printer configuration
file) for paper types. Typical values are 1001, 1002, ...

Merge | Merge Command Options

page 147

-pdfCompress
Disable compression of PDF object streams

Syntax
-pdfCompress Y/N

Description
By default, the PDF objects that are created have their streams compressed. You can turn that off if you
like. This is likely of value for only DocOrigin development for them to investigate any issues in object
construction.

Note that this does not effect the storage of graphics which do tend to be the largest component of output
PDFs. Always use the minimum reasonable resolution for your graphic images if you are at all sensitive to
PDF file sizes.

Merge | Merge Command Options

page 148

-pdfScript
Specify an alternative script insertion file for fillable PDF.

Syntax
-pdfScript yourPDFScript.js

Description
This lets you provide your own JavaScript file for insertion into Fillable PDFs. That is as opposed to the
default file: DOPDFScript.js that is installed in .../DO/Bin.

Obviously, this applies only when you are generating fillable PDF output.

The big bonus here is that you can include generic JavaScript functions for use in your PDF Viewer scripts.
That is, as referenced by your form object's PDF Input event, or by your input field attributes.

No doubt you will copy the standard .../DO/Bin/DOPDFScript.js, likely to your Overrides folder, say as
.../User/Overrides/PDFScript.js. Edit it. Then in your Merge command line, or in your Merge.prm file
you could code the option as follows:

-pdfScript $O/PDFScript.js

That file contains DocOrigin functions as well, so do be careful not to alter them, but feel free to add
functions outside of the DocOrigin object. Do note that the file extension is .js, not .wjs. It is plain
JavaScript, without any DocOrigin extensions. You should probably reference Adobe's PDF API manual a lot.
A link to it is found on the Fillable Forms page.

See Also

Fillable Forms

Merge | Merge Command Options

page 149

-preferImages
(As of 3.1.002.04)

Specify the image search location

Syntax
-preferImages fromXatw/fromDisk

Description
When Merge is processing image file names found in the data stream it has an algorithm that it follows,
see: -imagePath. One portion of that algorithm is affected by this -preferImages option. Depending on the
setting of this option it may choose to look for the named image file inside the XATW being used by Merge
or choose to look in the file system.

The default setting is fromXatw.

See -imagePath for the search order algorithm.

See Also

Command Line Processing -imagePath

Note: This option was turned into a "do nothing" option in 3.1.002.06. See -imagePath.

Recommended Review

That default, fromXatw, is for backward compatibility purposes. We recommend that the setting be
fromDisk. But of course, that choice is up to you. If you wish to change the default setting please
revise your $O/Merge.prm file.

Merge | Merge Command Options

page 150

1.
2.
3.
4.

-printInDocumentOrder
(Merge only)

Control the order in which Merge lays down objects and their backgrounds.

Syntax
-printInDocumentOrder Y/N

Description
When -printInDocumentOrder is not specified, it defaults to N (i.e. off). In that normal mode Merge will do
several passes over the set of objects to be printed.

Lay down any shaded backgrounds
Lay down any images
Lay down text
Lay down fields

This works admirably well 99% of the time. However, sometimes you want to have greater control over the
object drawing sequence. By specifying -printInDocumentOrder, (when specified, it defaults to Y), Merge
will proceed down the document DOM tree, as represented in the Form Explorer view, and draw each
object as it goes. For each object in turn it draws the background of the object before drawing its
foreground. In this way, you can control whether one object gets drawn above or below another object by
ordering those objects in the Form Explorer.

If your Merge run is using multiple output configurations you really should specify the leading prt as in:

-pdfPrintInDocumentOrder or -lj4PrintInDocumentOrder

If you are trying to stamp an image overtop of a page's content it is common to put that image at the
bottom of the Form Explorer list. Then specify this._transparent = true; on that image object because
you want the lighter areas of the image to allow the underlying page content to show through. But, (and
backwards compatibility keeps us from changing this), for PCL you must use -lj4PrintInDocumentOrder=Y
whereas for PDF, you must use -pdfPrintInDocumentOrder=N. The underlying technologies address these
requirements differently.

Merge | Merge Command Options

page 151

-prt option
Sets printer/driver-specific parameters.

Syntax
-prt option value

In reality, the prt and option sections are concatenated with no space between them. E.g.
-PDFCombineDocuments.

Description
Sets printer/driver-specific parameters.

prt specifies a printer name from the <Printer> tag in the printer configuration file (.prt). For example, in
the Default-LJ4.prt configuration file the LaserJet 4 is specified as <Printer Name="LJ4" Type="PCL" > .
The prt value for this configuration would be LJ4.

Use the -prt command option together with the config file's Name value to override settings in the .prt file.

For example,

-LJ4CombineDocuments yes causes all LJ4 output to print to a single spool file

-PDFOutputfile myfile.pdf prints the PDF output to myfile.pdf

Note that for the Outputfile setting, Merge will do standard date/time substitutions as described in File
Naming Conventions. In addition, if the file name contains a field name between square brackets as in
[Field1], Merge does field substitutions in the same way it does for embedded fields within a text label.

In the example below, Merge looks for a field with the name myFileName in the data. If it finds a field by
that name it substitutes in its value. If no field is found, the square brackets and everything between them
are removed from the resulting file name.

-LJ4Outputfile $U/Output/[myFileName].pcl

-PDFOutputfile $U/Output/[myFileName].pdf

Note that $U is automatically defined as the User folder of the installation location.

Printer Options
Most settings in the .prt (configuration files) can be set on the command line. The command line setting
will override the default settings in the configuration file. Here are a few that may be more common:

-PDFBookmark Yes|No

Turn on/off bookmark generation in pdf files.

-PCLColor Yes|No

Merge | Merge Command Options

page 152

Control whether a PCL printer prints in color or black-and-white.

-prtCombineDocuments Yes|No

Control if all documents in the job are in one PDF file / printer stream or not.

-prtDuplex form|left|top|right|simplex

As of 3.0.003.13, specify the duplexing option to use for the prt output configuration.

-PDFEmbedData Yes|No

As of 3.0.003.10, if the -PDFEmbedData specification is given for PDF-based output, the data for the
document will be embedded in the PDF. Technically, it adds:

/PieceInfo <</DocOrigin <</LastModified (xxxx) /Private nn 0 R>> >>

to the document catalog and creates object nn as an xml representation of the data. This applies to single
document PDFs only, not combined documents. That is, PDFExtract cannot extract the data for a single
document from a combined PDF. Instead, you always get the data for the full set of documents in the PDF
file regardless of your possible document selection options.

As of 3.0.004.06, PDFExtract extracts only the data for those documents that were selected.

As of 3.0.003.13, use the script function _file.readPdfData() to extract that XML.

-prtEmbedFonts Yes|No

Embed fonts into PDF files or download fonts to printers.

-PDFMode PDF/A

Have PDF files be generated in PDF/A (archive) format.

-PDFPageMode UseNone

Add a pdf/PageMode option to the generated file. Options include UseOutlines, UseThumbs, FullScreen.
See your PDF reference manual for details. The UseThumbs, for instance, defaults to showing Thumbnail
images of each page in the document in the PDF viewer.

-prtOutputfile filename
Specify individual filenames for each driver when using multiple print drivers.

-prtOverwritefile Yes|No
If the output file already exists should it be overwritten? If no, a suffix is added to make it unique.

-prtSpoolerDocName "any name"
Specify a custom document name for the spooler to show. See -spoolerDocName.

-PDFTitle "any title"
As of 3.1.002.07 set the PDF property Title explicitly. The Title in the Acrobat File > Properties list is
normally set to the PDF file name. This can be overridden by using the TagTitle object tag on the Form
object, or by using the -Title or -PDFTitle option on the command line. Some versions of Acrobat will use
this title as the text in the Acrobat tab when the pdf is displayed.

Merge | Merge Command Options

page 153

See Also

File Naming Conventions _printer _file

Merge | Merge Command Options

page 154

-rtfParserVersion
(As of 3.1.002.06)

Specify the DocOrigin RTF parser version.

Syntax
-rtfParserVersion version

Description
This option allows to specify the DocOrigin RTF parser version. The default version is "1". This is the original
RTF parser left for backward compatibility.

As of 3.1.002.06, it's possible to enable parsing of paragraph formatting commands. DocOrigin RTF parser
version "2" supports per paragraph indentation, tab positions, alignment, and space before/after.

See Also

RTF Support

Merge | Merge Command Options

page 155

-scriptFile
Specify a script for Merge to run as soon as the form file is opened

Syntax
-scriptFile script file name

Description
Specify the fully pathed name of a script file for Merge to associate with the top level form object. Typically
such a script file has a Start of Job event script which is thus executed as soon as the form is opened.

-scriptFile C:/DocOrigin/User/Scripts/InitForm.wjs

This option is rarely used.

The script file must include the wrapper for any event it wants to supply. For example, this would require:

function OnStartJob() {
 ...
}

 as the wrapper for the Start-of-Job event. Script for multiple events, e.g. OnStartJob, and OnStartDoc can
be supplied in the script file, provided the script for each event is surrounded by its applicable wrapper.

One place where this is used is in scripts for Design External Tools. Design's External Tool runs

Merge -scriptFile toolName.wjs

and effects (most likely) a change in the XATW being edited.

Merge | Merge Command Options

page 156

-scriptFolder (Merge Command Options)
Specify the folder where the script files reside.

Syntax
-scriptFolder foldername

Description
Specify the folder where the script files reside. By default, script files are assumed to be in the same folder
as the form (the folder specified by the -form command line option). Use -scriptFolder to change this
default.

-scriptFolder C:/DocOrigin/User/Scripts

When Merge encounters a #include in a script embedded in the form, and the include name does not
provide a fully qualified path, Merge will look for the name in the -scriptFolder folder.

A common alternative is to use a folder mapping variable as in:

#include "$S/MyScript.wjs"

This same path is used for a referenced script-based filter that has no fully qualified path.

Merge | Merge Command Options

page 157

-scriptTools
(Merge only) (HTML output only)

Disable the automatic inclusion of a library of standard DocOrigin script functions into a generated HTML
file.

Syntax
-scriptTools Y/N

Description
The standard script functions normally are automatically included in all HTML output. These functions are
used when creating fillable HTML forms. They also include routines for handling dynamic manipulation of
HTML forms and signature pad data input.

Using this option you can suppress the inclusion of this script if you are creating static non-interactive
HTML output.

The default option value is Y.

Merge | Merge Command Options

page 158

-showNames
Overprint the PDF output with the names of the panes.

Syntax
-showNames [color[,offset]]

Description
This option is strictly for debugging purposes and even more so for support personnel who need to get
acquainted with an unfamiliar form design. It causes each pane that is output (PDF only) to be overwritten
with the full pane name. Even during initial form design, it can provide some insights into "surprising"
output results. See the same results below.

By default, the names come out in blue and are overwritten in the top left corner of the pane. You can
override that by specifying a preferred color and/or an offset (in inches) from the left-hand side of the
pane. E.g.

-showNames red,4

Put the pane names out in red, 4 inches in from the left.

Since a parent pane and its first child pane share the same top left position, there are going to be some
overwrite collisions. Depending on what happens to be under the overprinted pane name, you may have to
squint a bit to make it out. Nevertheless, this option has proven to be useful in getting oriented with a form
design that the viewer has never seen before.

Merge | Merge Command Options

page 159

-splitSegs
Control the splitting of output text strings into shorter strings when generating printed or PDF output.

Syntax
-splitSegs Y/N

Description
Control the splitting of output text strings into shorter strings when generating printed or PDF output.

Due to small scaling problems with Truetype fonts, it is possible that longer text words can overlap the
following word. This tends to be an unpredictable effect of display size and scaling. To mitigate this
problem, Merge will split larger words into separate segments and start each at an accurately determined
position, effectively reducing the cumulative positioning error of several characters in a row. By default,
this option is set to Y. To disable the feature set -splitSegs N.

When -splitSegs Y is in force, the number of characters after which a split is done varies by font size: 5
characters for 10pt, 6 for 12pt, etc.

Merge | Merge Command Options

page 160

-spoolerDocName
Supplies a custom document name to the spooler

Syntax
-spoolerDocName "a name"

Description
By default, Merge will provide the spooler with a document name of "Merge prt Document". Using this
option you can supply a custom name such as "Invoice 2018-001".

While you can specify this on the command line or in a .prt (output configuration) file, it is more likely that
you would use the _printer.setOption() function to set the name dynamically. For example:

_printer.setOption("spoolerDocName", "Invoice "+InvoiceNumber._value);

It references field names in square brackets causing dynamic text substitution to happen. Also, it can
reference a whole pile of "%x" type date/time elements too. See File Naming Conventions.

See Also

_printer -prt option

Merge | Merge Command Options

page 161

-stretchFields
(As of 3.2.001.06)

Control whether fields can stretch vertically.

Syntax
-stretchFields Y/N

Description
Control whether Merge allows fields to stretch vertically in the same way DocOrigin stretches vertical lines
that touch a pane edge-to-edge. This is useful when fields are used to define the object borders of a table.
Applying -stretchFields Y causes the fields that touch a pane edge-to-edge to extend the height of the
pane, hence, all cells match in the pane. The default setting is N, i.e. do not stretch.

Merge | Merge Command Options

page 162

-symbolSet
(As of 3.0.002.03)

Specify the symbol set (codepage) that the incoming data is in.

Syntax
-symbolSet codepage

Description
Inform Merge which codepage the xml data stream is in. This is unlikely to be useful since xml files state
their encoding explicitly. If the xml "lies" by providing non-UTF-8 data but leaves out the encoding
specification, thereby implicitly defining it as being UTF-8, then this option would be useful.

Note that specifying the -symbolset option to a filter (not Merge itself) can be very useful.

codepage is the name of the codepage the data is in. The list of available codepages is large. You can see
that list by running:

uconv -l // that's a lowercase 'ell'

uconv is in the .../DO/Bin folder of your installation.

cp1252 and cp850 are popular choices.

See Also

Codepage Handling ConvertDatToXml Filter

Merge | Merge Command Options

page 163

-testMail
Specify an alternate (an override) address for all calls to _sendmail().

Syntax
-testMail email address

Description
If you specify this alternate email address all calls to _sendmail() via script, or via internal email alerts, will
be re-directed to this email address. Use this when testing to avoid sending inadvertent emails to
addresses that might otherwise be used in a production situation.

See Also

_sendmail -alertTo

Merge | Merge Command Options

page 164

-textpresentation
Control whether the printed text is broken into words or segments when written.

Syntax
-textpresentation 0/1

Description
The HTM driver defaults to -textpresentation 1 (always a line-at-a-time). All other drivers (PCL included)
default to -textpresentation 0.

The output of text to printers relies on accurate knowledge of the exact printer handling of font metrics.
This can vary, depending on the printer models, resolution, etc. For this reason, Merge normally breaks
lines of text into words and sometimes smaller word-segments and positions each independently. This
reduces the occurrence of text overlap or right-justification errors.

The -textpresentation command allows you to override this default behavior.

If you specify a value of 1, each line of text is printed as a single unit, rather than being broken into smaller
segments. This can be useful in the generated output if you are actually parsing the output file to recover
text for other purposes. It will also result in slightly smaller output files.

The downside of -textpresentation 1 is that you may find that text lines end up slightly too long, or too
short which can be an issue if long lines are supposed to be right-justified. This is particularly noticeable
when printing text for something like a table of contents, where a long row of dots is followed by a page
number. If that text is right-justified with the aim of aligning the page numbers, -textpresentation 1 may
not accurately align that text. Using the default -textpresentation 0 option should fix that problem.

See Also

-splitSegs

Note: When generating PDF output, if you want/have to access the generated PDF, you definitely
want to use -PDFCompress N (naturally this will generate (much) bigger PDF files).

Merge | Merge Command Options

page 165

-translate
(As of 3.2.001.01)

Specify an Auto Translate .ini file.

Syntax
-translate inifilename

Description
The Auto Translate functionality requires the use of command-line options: -translate and -language.
The Translate .ini file is used in conjunction with the -language option to control the automatic
conversion of fields or text labels into local languages. The Translate .ini file follows the standard format:

[section]

name=value

Each section is used for the language value, with one key-value pair per line following each
section. The name of the key is the lookup for an entry called a TranslateKey, and the value is the Text
you would like to display. For example:

-translate $$F/translate.ini

The -language defines the section to be used for the translation.

See Also

Auto Translate -language

See Sample in User Guide (User Login Required)

Auto Translate Sample Collateral

https://docs.docorigin.com/design/feature-examples/auto-translate

Merge | Merge Command Options

page 166

-trimData
Causes all trailing blanks on data values to be removed immediately when read from the data file.

Syntax
-trimData Y/N

Description
Causes all trailing blanks on data values to be removed immediately when read from the data file. This
helps to avoid certain undesired word wrap problems with data which has a large number of trailing
blanks. This value defaults to Y (data is trimmed).

It does not affect leading blanks.

Merge | Merge Command Options

page 167

-useBuiltinSS
(Merge only)

PCL printing only. Control the symbolset handling done by Merge.

Syntax
-useBuiltinSS

Description
Some old printers (we've encountered it on a Kyocera) are incapable of handling downloaded symbolset
definitions. Supplying -useBuiltinSS Yes will instruct Merge to use the printer's built-in symbolset
definitions for its resident fonts. With any modern printer you are unlikely to use this option.

Normally, Merge will keep track of all of the characters that a document uses. Merge then creates a
dynamic symbolset definition that is perfect for the given document. In that symbolset definition, the first
127 characters are the standard 7-bit ASCII characters. After that, a new symbolset codepoint is added for
each character outside of 1 to 127 range. Merge will download that symbolset definition before and when
selecting a font it will specify that downloaded symbolset.

Note that in this dynamic symbolset the 0x80 (128) codepoint does not refer to the Euro symbol but is
rather whatever first character, outside of the 1 to 127 range, that was encountered for this font for this
document. It might refer to the é character or whichever character valued greater than 127 was first
encountered. If you peer into .pcl files, do not be misled by the existence of the 0x80 codepoint.

If you specify -useBuiltinSS yes then Merge will not use the above dynamic symbolset technique for
resident fonts. Instead, it will use symbolsets that are built into the printer. PCL printers from different
manufacturers may support a variety of built-in symbolsets for their resident fonts. These printers
generally have a control panel, or some means, to cause them to print out the set of fonts they have and in
so doing also show the symbolsets that those fonts use. Merge is aware of only certain symbolsets. These
are defined in file .../DO/Bin/Default-DOpclSymbolsets.ss. The symbolsets that are defined in there are
far and away the most common, and probably cover everything you need. If you happen to want to use a
symbolset that is not there you can create a custom override file, $O/DOpclSymbolsets.ss. Of course, it is a
plain text file.

As Merge processes a text string it will detect when it encounters a character that is not in the currently
selected built-in symbolset. When that happens, it will work out just what symbolset the offending
character is in and switch to that symbolset. Later, possibly even "soon", it may have to switch back or to
some other symbolset that contains the next character(s). Notice that symbolset selection is independent
of font selection. By using -useBuiltinSS yes you are saying that the printer does not understand
downloaded dynamic symbolsets but rather understands only built-in symbolsets.

It's incredibly unlikely that you would ever have to do this. A useful resource, if you do go down this
path, is http://www.pclviewer.com/resources/pcl_symbolset.html.

http://www.pclviewer.com/resources/pcl_symbolset.html

Merge | Merge Command Options

page 168

-useFilterFormList
(Merge only)

Identify to Merge the forms found by a data conversion filter

Syntax
-useFilterFormList

Description
Have Merge switch to using a set of forms as determined by a data filter.

Operation
This option is used only in concert with a -formList option that is provided to the ConvertDatToXml filter.
The -formList option identifies the name of a file to which all form names found in the data file are
written. The ConvertDatToXml filter does that collection of form names and writes them out to the
identified file. Then, if Merge is given this -useFilterFormList option it will discard any initial -form
specification it was given and instead use the list of forms that the ConvertDatToxml filter found.

Example
Suppose an application produces a data stream that can contain data for each of three possible
documents: PurchaseOrder, Invoice, and Statement. Those documents have independently maintained
forms. The field nominated format data stream might have something like this in it:

^form PurchaseOrder
^field
^form Invoice
^field ...
...

Your run of Merge does not know ahead of time which of the three forms will be used. So you supply
Merge with a -form option that lists all the potentially encountered forms.

-form PurchaseOrder;Invoice;Statement

You specify to the filter that you want it to collect up a list of all the forms that the data file of the moment
uses.

-filter "ConvertDatToXml -formList formsUsed.txt"

Having specified that, the ConvertDatToXml filter would end up putting the text

PurchaseOrder;Invoice

into the file you nominated for that purpose, in our example formsUsed.txt.

Merge | Merge Command Options

page 169

If you provide Merge with the command line option -useFilterFormList, after the ConvertDatToXml filter
runs, it will discard the original -form specification and instead use the form list that it finds in the file that
was named by the -formList option that was given to ConvertDatToXml. In this example, it would end up
with a form list of just PurchaseOrder;Invoice. As per usual, those forms would be combined into a
temporary single form which would be used in the merging of the xml data that resulted from the
ConvertDatToXml filter. Naturally, if our data stream had had ^form Statement in it, then that form name
would have been in the list of form names that was created. Only those form names that occurred in the
data stream would end up in the created form list. The form name list has no duplicates and is in the order
of their first occurrence in the data stream.

No Path Information
When ConvertDatToXml extracts the form names from its data file, it discards all the path information,
leaving it with a 'naked' form name such as Invoice. When that name is passed on to Merge it will look for
that Invoice.xatw file in the current directory. You will have to take the appropriate steps to ensure that
the current directory is where the form design files can be found.

See Also

ConvertDatToXml Filter

Merge | Merge Command Options

page 170

-wininfo
Display "Merge-relevant" driver information for any Windows printer driver.

Syntax
-wininfo drivername

Description
When drivername is not provided, a printer selection dialog is displayed for selecting a printer driver. The
output is written to the console window.

This command can be used to assist in configuring Merge for options such as paper type and duplexing.

If this option is specified, Merge will exit immediately after providing the requested Windows printer info.

An example output excerpt is as follows:

Windows printer options for 'HP LaserJet 200 color M251 PCL 6'
 Duplex is Available.

 InputTray 15 Automatically Select
 InputTray 257 Printer auto select
 InputTray 258 Manual Feed in Tray 1
 InputTray 259 Tray 1

 PaperType 297 Unspecified
 PaperType 296 Plain
 PaperType 295 HP EcoSMART Lite
 PaperType 294 HP LaserJet 90g
 PaperType 293 HP Color Laser Matte 105g
 PaperType 292 HP Premium Choice Matte 120g
 PaperType 291 HP Premium Presentation Matte 120g
 PaperType 290 HP Brochure Matte 150g
 PaperType 289 HP Cover Matte 200g
 PaperType 288 HP Matte Photo 200g
 PaperType 287 HP Premium Presentation Glossy 120g
 PaperType 286 HP Brochure Glossy 150g
 PaperType 285 HP Tri-fold Brochure Glossy 150g
 ...

See Also

Configuration files

Merge | The Merge Algorithm

page 171

1.
2.

3.
4.
5.

a.
b.
c.

d.

e.
f.
g.

h.
i.
j.

k.
l.

m.

n.
o.
p.
q.

i.

The Merge Algorithm
To generate the output, Merge performs the following steps:

Load the form file into an internal Form DOM (Document Object Module).
Process Filter script or process if specified. This enables translation of the input data prior to
merging with the form.
Process any "Start Job" event script. For information about the Merge events, see Merge Events.
Open the data file - possibly altered by the Filter process above.
For each document in the data file:

Load the XML data for one document into the Data DOM.
Process any "Start of Document" event script.
Combine the Data DOM with the Form DOM to create the Document DOM. This includes
replicating panes for which there are multiple instances of data elements within this
document's Data DOM. See _data, _document.
Process global fields to replicate their values to all instances within the document, see Global
Fields.
Replace each automatic field reference ($fieldname) in the form.
Process any "End of Merge" event script.
Replace each embedded field reference (for example, [FieldName] within a text label string)
with the corresponding field value. For more information, see Auto/Embedded Fields.
Word-wrap all text fields, handle truncation and resize fields that overflow.
Determine the actual size for all panes given that the fields are filled with data.
Paginate the document. The processing to this point treats pages as though they can have
an infinite height. In this step, any page that overflows is split between panes or within panes
that are flagged as being allowed to be split across pages. The overflow is moved to a new
overflow page. This process is repeated until all the panes fit properly on all pages. See
Pagination.
Whenever a new page is inserted, overflow footer panes may be inserted at the bottom of one
page and overflow header panes may be inserted at the top of the next page. Also on the
newly inserted page, footer panes and header panes are processed to make sure that the
values for any global fields are replicated.
Process any "End of Paginate" event script.
Insert "blank" pages where necessary - this is usually to allow for proper printing of a
duplexed document. Some pages are always to appear on the front side of the sheet of paper.
To cause that to happen an additional page may have to be inserted.
Process text labels that contain a "Page N of M" type embedded field, as the number of pages
in the document is now known.
Word-wrap any text labels that contain a "Page N of M" type embedded field.
Process any "Ready to Print" event script.
Perform a final word-wrap check to catch any fields that were altered in the previous script.
Print the document - for each print driver do the following:

Process any "Start next Print Driver" event script.

Merge | The Merge Algorithm

page 172

ii.

iii.
iv.

r.

6.

7.

8.
9.

10.

Establish the output location. Merge can create a single output file for all documents
or a different output file for each document.
Render all pages to the output: to a PDF, a printer or a disk file.
Terminate the document; close the open output file when individual files are required
for each document.

Update the summary variables for the document and page counts. These updated page and
document counts are available in the script engine. Script can be added to the "End of
Document" event to store this information for later use by the Start of Summary script event.

Process any "Start of Summary" event script. This script can create a summary data file that is used
for summary printing.
Process any summary data supplied in the previous step. This results in a full "document merge"
of the summary data with the form using only those Panes whose Job Section has been set to
"Summary".
Process any "End of Job" event script.
Process "Finalize" event script.
End of processing; exit Merge.

Merge | XML Data Files

page 173

XML Data Files
Data that is to be combined with a form is specified in XML format. A typical XML data file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<XmlData>
 <Document>
 <ChargeTo>
 <Name>TONY BLUE</Name>
 <Addr1>1/44 GREEN ST</Addr1>
 <Addr2>YELLOWTOWN 3135</Addr2>
 </ChargeTo>
 <Header>
 <Invoice>10026645</Invoice>
 <Date>19MAR2010</Date>
 <SalesPerson>3</SalesPerson>
 <AccountNum>001327</AccountNum>
 </Header>
 <DetailLines>
 <LineItem>
 <ItemCode>F/GW712</ItemCode>
 <Desc>EXCELLENCE 7.5KG WASHER</Desc>
 <Qty>1</Qty>
 <Price>1089.00</Price>
 <Discount>NETT</Discount>
 <TAX>108.91 **</TAX>
 </LineItem>
 <LineItem>
 <ItemCode>F/ED56</ItemCode>
 <Desc>4.5KG S/S DRYER</Desc>
 <Qty>1</Qty>
 <Price>618.00</Price>
 <Discount>NETT</Discount>
 <TAX>61.24 **</TAX>
 </LineItem>
 <LineItem>
 <ItemCode>E/DS1100</ItemCode>
 <Desc>TURBO HEAD</Desc>
 <Qty>1</Qty>
 <Price>53.90</Price>
 <Discount>NETT</Discount>
 <TAX>0.00 **</TAX>
 </LineItem>
 </DetailLines>
 <Totals>
 <TotalPrice>$1760.90</TotalPrice>
 <TotalTAX>$174.50</TotalTAX>
 </Totals>
 </Document>
 <Document>
a second set of data
</Document>

Merge | XML Data Files

page 174

1.
2.

1.

</XmlData>

Although the data stream may have many sets of data, Merge processes all the data between a
 <Document> and </Document> tag as a single document. Note that Merge ignores any tags and data not
included between the <Document> and tags. See also: -documentTag for setting a different document
separator tag.

The XML tag names ("ChargeTo", "Name", "Header" and so on) must correspond to field names within the
form. Design provides several features that enable a hierarchical structure to be created. For example, the
form for this data file might include a group of data fields called "ChargeTo" that contains the fields
"Name", "Addr1", and "Addr2". Merge will match the structure of the data to that of the form in order to
correctly fill the data fields.

The general rule for merging data into a form is that the form design can have extra structural levels (e.g.
groups and panes) but, to match, every structural level in the XML file must exist in the form design's
structure.

Form Data

a.b.field <a><field>xxx</field>... match

a.b.c.field <a><c><field>xxx</field>... match

a.c.field <a><c><field>xxx</field>... no match

XML Includes
One XML data file can include other XML data files. A fuller write-up of this feature can be found at
PaneTalk XML Includes.
In excessive brevity:

Use the -filter IncludeProcessor on the Merge command line.
Define the xi namespace on the main XML file's root tag:

<XmlData xmlns:xi="http://www.w3.org/2001/XInclude">

Reference the XML file to be included like thus:

<xi:include href="a file name.xml"/>

XML Attributes
You will notice that there are no attributes in the sample XML. That is the preferred style, in fact, it was the
required style until 3.0.005.05 (late December 2015). At that point, attributes could be provided on
structure tags (not on leaf tags). Those attributes would automatically be transformed into additional leaf
tags for the given structural element. For example:

<DetailLine Description="Construction Paper 50/Pack">

https://docs-admin.docorigin.com/display/PT/XML+Includes
http://docorigin.com/panetalk/XmlIncludes.php

Merge | XML Data Files

page 175

<Quantity>3</Quantity>
<Item>CP106</Item>
<UnitPrice>2.00</UnitPrice>
<Amount>6.00</Amount> </DetailLine>

would become (behind the scenes)

<DetailLine>
<Description>Construction Paper 50/Pack</Description>
<Quantity>3</Quantity>
<Item>CP106</Item>
<UnitPrice>2.00</UnitPrice>
<Amount>6.00</Amount>
</DetailLine>

No filter specification is required. That operation is automatic. To avoid the automatic transformation of
attributes to leaf data elements you can use the -ConvertAttributes No command-line option.

Note that putting attributes on leaf nodes (nodes with data, and no child nodes) will not work. For example,
the following is not allowed. It will not work.

<Item Desc="Paper">CP106</Item> !!Wrong

Besides writing filters, there is an even easier way to get at attributes, even those on leaf nodes. Contrary
to what you would think, this requires that you override the standard-setting and specify
-ConvertAttrinutes No. In that way, you've told Merge not to do its standard thing w.r.t. attributes but to let
you handle it.

There is an attribute() function on each data DOM node. The _data DOM node for any given field is most
easily referenced via the field's _dataSource property. Hence a construct in the pattern
field.dataSource.attribute("attrName{}") will get the value of the named attribute, or "" if the
attribute does not exist. Do beware of the possibility that _dataSouce may return null if there is no _data
node associated with a given field.

See Also

_data - Merge XML Data DOM

There is an XmlAttrs.wjs file delivered into the DO/Bin folder. It is essentially obsolete but left
around in case someone used it. This is doubly so since with the advent of the XmlInput class it is
easier to write filters for XML data files. See XmlInput Class.

Merge | XML Data Files

page 176

Image data
The most common, and expected, way to specify a data value for an image field is for it to provide the file
name of the image. This can also be an http: URL, though that will involve using, behind the scenes, an
invocation of curl to fetch the image to a temporary file in local storage and then process it from there.

An alternate way is to use a standard "data URI". In this format, the image data is base-64 encoded and it is
provided in the following style:

<imageFieldName>....</imageFieldName>

Per the usual base-64 standard, the encoding is split into lines that are 80 characters long.

Merge | XML Data Files

page 177

PDF Page Images
(As of 3.1.002.01)

You are now able to reference a page of a PDF file as an image. The syntax is as follows:

path/fileName.pdf?page=3&dpi=150

The default value for page is 1, and the default dpi is 150.

Default-PDF2PNG.wjs
To support the PDF-Page-as-an-Image feature, Merge (and Design) run a supplied script, named: "Default-
PDF2PNG.wjs". Naturally, that is in the DO/Bin ($E) folder. You may override that script by copying and
revising it in file User/Overrides/PDF2PNG.wjs. Merge will choose that override file if it exists.

If you look in that script file you will see that by default we have chosen to use the pdftopng.exe tool that is
available from Xpdf (https://www.xpdfreader.com/ -- you would want the xpdf tools). If you override the
script you may choose other such software tools. There appears to be a myriad set available.

To run that script Merge uses the RunScript program as follows:

RunScript -script [...]PDF2PNG.wjs -in="pdf spec provided" -out="a temp file for the

png"

The script is pretty small. It parses the supplied pdf spec to determine the pdf file name, the desired page
number, and the desired DPI (with defaults). It then runs $P/pdftopng.exe with its needed parameters. Of
course, your override script might run something else and indeed might look for other options on the pdf
spec (what I would call a 'query string'). The end result of whatever you run must produce an image file in
the supplied -out file. pdftopng.exe does that quite nicely. (As it happens, pdftopng produces a file name
of its own choosing but our script renames that to the demanded -out file name.)

$P?? What's that? $P was also introduced in 3.1.002.01 as a means to specify a semicolon-separated list
(path) of folders to search to find the base file name. Since we do not distribute these 3rd party files we do
not know where you will install them. By defining $P, typically in your $O/Paths.prm file, you can specify a
path for DO software to use to look for files.

Alternatively, you could put pdftopng directly in the $E (DO/Bin) folder. We recommend that you do not
put additional software in $E as future updates may cause it to be deleted.

Since the script is totally open, you can do whatever you want. Use whatever tools you want, and handle
whatever file types you want. Just pay attention to the -in and the -out parameters supplied by Merge
and you're good to go.

See Also

This functionality relies on the existence of 3rd party software which you must download and
install on your own. This functionality will not work until you do so. Considerable flexibility is built-
in to allow you to choose your desired 3rd party software. See Default-PDF2PNG.wjs below.

https://www.xpdfreader.com/

Merge | XML Data Files

page 178

$X String Substitutions JSON Data Files

Merge | JSON Data Files

page 179

JSON Data Files
(As of 3.2.001.01, experimental limited support of JSON input data was introduced.)

(As of 3.2.001.09, support was extended and improved.)

You should understand that Merge was designed to consume XML data and there is no one-to-one
conversion between XML and JSON but we do our best to make it as close as possible so Merge may
consume JSON as well. There may be tricky scenarios and you may have to adjust or restructure your JSON
in some cases.

A typical JSON data file looks like this:

{
 "Document": [
 {
 "ChargeTo": {
 "Name": "TONY BLUE",
 "Addr1": "1/44 GREEN ST",
 "Addr2": "YELLOWTOWN 3135"
 },
 "Header": {
 "Invoice": "10026645",
 "Date": "19MAR2010",
 "SalesPerson": "3",
 "AccountNum": "001327"
 },
 "DetailLines": [
 {
 "LineItem": {
 "ItemCode": "F/GW712",
 "Desc": "EXCELLENCE 7.5KG WASHER",
 "Qty": "1",
 "Price": "1089.00",
 "Discount": "NETT",
 "TAX": "108.91 **"
 }
 },
 {
 "LineItem": {
 "ItemCode": "F/ED56",
 "Desc": "4.5KG S/S DRYER",
 "Qty": "1",
 "Price": "618.00",
 "Discount": "NETT",
 "TAX": "61.24 **"
 }
 },
 {
 "LineItem": {
 "ItemCode": "E/DS1100",
 "Desc": "TURBO HEAD",

Merge | JSON Data Files

page 180

 "Qty": "1",
 "Price": "53.90",
 "Discount": "NETT",
 "TAX": "0.00 **"
 }
 }
],
 "Totals": {
 "TotalPrice": "$1760.90",
 "TotalTAX": "$174.50"
 }
 },
 {
 "a" : "second set of data"
 }
]
}

Note, you may examine the format of JSON input data via opening sample or your form in Design,
navigating menu Tools > PDF Preview > Auto Generate Test Data > Save JSON Data and checking the
resulting JSON file.

Also, if you have JSON data file and are not sure how it is going to be matched with your form you may
open Design, at the bottom-left, find "Data Explorer" pane, and using the context menu, "Open data file" on
it examine what the resulting data structure will look like.

See Also

XML Data Files

Merge | Combine the Form and Data

page 181

1.

2.
3.

4.

5.
6.
7.
8.

a.
b.
c.

d.
e.
f.

i.

ii.

iii.

g.
h.

i.

ii.
iii.

i.
j.

Combine the Form and Data
When combining data with dynamic forms, the following steps occur:

If Merge is processing a Summary document, only Panes marked as Job Section "Summary" or "All"
are enabled. Otherwise, Panes marked "Main" or "All" are enabled.
Load the Data DOM from the data file (.xml).
Create an empty Document DOM to build the "printed" document into. This contains only the root
node to start with.
Run through the Form DOM identifying objects (pages and panes) that are mandatory. As one is
identified, it is added to the Document DOM to ensure that it ends up as a part of the final
document. A pane is included if it and all of its ancestor panes are flagged as mandatory.
Set the Document DOMs context as its root node.
Set the Form DOMs context as its root node.
Start processing by pointing to the first data item of the Data DOM.
For each data item in the Data DOM do the following:

Get the next data item from the Data DOM.
If end of the Data DOM, return to step 5.4 in The Merge Algorithm.
Establish the items fully qualified name from the Data DOM. For information _data - Merge
XML Data DOM.
Look for the fully qualified name in the Document DOM.
If NOT found, look through the entire Document DOM for a match on the fully qualified name.
If found:

If the pane does not have data yet, then set the Document DOM's context and place
data in all fields and return to step 8.1.
If the pane may be instantiated multiple times, insert another copy of the pane
immediately after the last copy in the Document DOM. Set the Document DOM's
context and place data in all fields. Return to step 8.1.
Toss this piece of data. Return to step 8.1. Assume there is no available place for this
data in this document.

Look in the Form DOM for a match on the fully qualified name.
If found:

Instantiate the pane identified by the fully qualified name along with its ancestors in the
Document DOM
Set the Document DOM's context and place data in all fields.
Return to step 8.1.

If not found, clear the data node and all its descendants. There is no place for this data.
Return to step 8.1.

Merge | Field Name Matching

page 182

•

•

•
•

•

Field Name Matching
An element node in the fully qualified name of the item in the Document DOM may be omitted from the
fully qualified name of the corresponding item in the Data DOM.

Examples:

A data item InvoiceDetailLine.Field1 may map to a Document DOM item

InvoiceTable.InvoiceDetailLine.Field1.
A data item InvoiceTable.Field1 may map to a Document DOM item

InvoiceTable.InvoiceDetailLine.Field1.
A data item Field1 may map to a Document DOM item InvoiceTable.InvoiceDetailLine.Field1.
A data item InvoiceTable.Header.Field1 will NOT map to a Document DOM item
InvoiceTable.InvoiceDetailLine.Field1.
Because Header is not a part of the fully qualified name of the Document DOM item, the mapping is not allowed.
A data item InvoiceDetailLine.InvoiceTable.Field1 will NOT map to a Document DOM item

InvoiceTable.InvoiceDetailLine.Field1.
Because the first two-element nodes are not in the same order in the fully qualified names, the hierarchies are
different.

Saying it a slightly different way: The form design can have more structure than the XML data.

The form design can have panes and groups that add structure that is not necessarily in the XML data.

For a match to occur all ancestor nodes in the XML data much match up with ancestor nodes in the form
design, though the form design may have extra structure interspersed between those nodes.

Merge | Barcode Options

page 183

Barcode Options
Barcodes in DocOrigin designs can be either static barcodes (the value is fixed when the form is Designed)
or dynamic Barcode Fields, filled when Merge is run. The static barcodes are created using the barcode
drawing tool in Design. To use dynamic barcodes, draw a Field, then set the Object Properties Field 'Display
as' to Barcode. Both options then allow you to select from a dropdown list of built-in barcode formats.

Note that the Zebra printer has built-in barcode generation that is defined and used somewhat
differently - see the Zebra Internal Barcodes.

Merge | Barcode Options

page 184

2D Barcodes
2-dimensional barcodes are drawn as raster images that are scaled to fill the entire barcode object or field.
DocOrigin supports the following 2-dimensional barcodes - DataMatrix, MaxiCode, PDF417, and QR Code.

Merge | Barcode Options

page 185

•
•
•

AusPost Barcode
This is a barcode used by the Australian Post.

Options
BarcodeAUSPOSTText Y - if Yes adds human-readable text above the barcode.
BarcodeAUSPOSTTextBelow N - if Yes adds human-readable text above the barcode.
BarcodeAUSPOSTBarWidth 0 - set width of narrowest bar. See Barcode Widths section above.

Merge | Barcode Options

page 186

Barcode Bar Widths
In DocOrigin all linear barcodes maintain fixed ratios for the bars. (This is unlike systems like Jetform
where you explicitly set widths for individual bars.) With DocOrigin the .prt configuration file defines a basic
bar width. If not overridden by a setParm() call, or by an Object Tag setting, DocOrigin will use that width
and its internal knowledge of the ratios of bar widths in a given barcode type to render the chosen
barcode.

If the basic bar width is set to 0, then DocOrigin will use its internal knowledge of the barcode's relative
bar widths to come up with a base bar width so as to stretch the barcode across the width that was
designed for it in the form design. In general, the default basic bar width is set to 0, so this scaling is in
effect by default.

In an override .prt, or using setParm(), or using an Object Tag in Design, you may override the basic bar
width. In that case, DocOrigin will use its internal knowledge of the relative bar widths in a given barcode
type to produce the fixed-width rendering. For example, with barcode type Code 128, the internally known
ratios, per the Code 128 spec are: 1:2:3:4 -DocOrigin applies those ratios to the overridden basic bar width.

In the Default-LJ4.prt file you will see the following configuration for Code 128 options:

<Barcode128Text>Y</Barcode128Text> <!-- Draw text below barcode -->
<Barcode128CharacterSet>8859-1</Barcode128CharacterSet> <!-- symbolset of data -->
<Barcode128BarWidth>0</Barcode128BarWidth> <!-- Set basic bar width; 0 - scale to Design
width -->

Other barcode types have similar-but-different option names and settings. Some have more than others.

You can override the default barcode width in Design by selecting the barcode object or field, then using
the Format > ObjectTags command:

Set Barcode Width using Format > ObjectTags

You can also override these configured settings at Merge runtime, using setParm().

// set this field's barcode to a base unit width of 10 microns.
this.setParm("Barcode128BarWidth", 10);
// set this field's barcode to a base unit width of 1 millimeter.
this.setParm("Barcode128BarWidth", "1mm");

Merge | Barcode Options

page 187

•

•

•

•

Code 11
Code 11, also known as USD-8, can encode any length string consisting of the digits 0–9 and the dash
character (-).

Options:

Barcode11Text Y - if Yes adds human-readable text below the barcode. Each character is drawn beneath its bar
representation, so spread across the width of the barcode.
Barcode11Checksum Y - if Yes, computes a trailing checksum automatically, 1 digit if the length of the message
to encoded is less than 10 characters, and 2 digits if 10 characters or longer.
Barcode11NarrowBarWidth 0 - set width of the narrowest bar, 0 means auto calculate to fit the object's
dimensions.
Barcode11Ratio 0 - set ratio of narrow to wide bars, 0 means auto calculate to fit the object's dimensions.

Merge | Barcode Options

page 188

•
•
•
•

Code 25
Standard 2 of 5 supports numeric data only (0-9). Interleaved 2 of 5 is a compressed variant that takes the
same options below.

Options:

Barcode25Text Y - if Yes adds human-readable text below the barcode.
Barcode25AddChecksum N - if Yes, computes a trailing checksum automatically.
Barcode25BarWidth 0 - set width of narrowest bar. See Barcode Bar Widths section above.
Barcode25Ratio 3 - set ratio of narrow to wide bars.

Merge | Barcode Options

page 189

•

•
•
•
•
•
•

Code 39
Code 39 or 3-of-9 supports a 43-character set of upper case letters, digits, and a few special characters. A
variant using the Barcode39FullAscii option will encode a full ascii character using two standard code 39
characters.

Options
Barcode39Text Y - if Yes adds human-readable text below the barcode. Each character is drawn beneath its bar
representation, so spread across the width of the barcode.
Barcode39DerivedText N - if Yes, text includes any added characters from checksum or fullascii options as well.
Barcode39CompactText N - draws text as a single text string centered under the entire barcode.
Barcode39AddChecksum N - if Yes, computes a trailing checksum automatically.
Barcode39FullAscii N - if Yes, convert text to use 2-character encoding of all text.
Barcode39BarWidth 0 - set width of narrowest bar. See Barcode Widths section above.
Barcode39Ratio 3 - set ratio of narrow to wide bars.

Merge | Barcode Options

page 190

•

Code 128
Code 128 is a popular barcode that supports a full alphanumeric character set. In order to achieve
compactness in their rendering, they support three different encoding tables known as Code 128 A, Code
128 B, and Code 128 C.

A useful reference:

How Barcodes Work by University of Washington

Historically you actually had to know that and choose between the different encodings, but DocOrigin does
not require you to know that. It uses "adaptive encoding" – choosing the best performing (most compact)
encoding automatically.

There is no more explicit dropping into code set C, versus code set B, etc. Just supply the data and
DocOrigin will do the rest. As always – supply the data, and let the rendering engine decide on
presentment.

GS1-128 barcodes - a variant of Barcode 128.

Support for the GS1-128 subset is enabled by setting the Barcode128-GS1 option.

A useful reference:

GS1 General Specifications

especially the chapter: GS1-128 symbology specifications.

Merge generates all of the FNC1 characters that are required. Merge may also generate all of the
Modulo-10 check digits that may be required. Generation of the Modulo-10 check digit is defined by
Barcode128-GS1CheckSum.

Merge expects the data for Gs1-128 bar code to be supplied in the following format:

(AI1)Data1(AI2)Data2...

Where AI1 AI2 etc are GS1 Application Identifiers and Data1, Data2, etc. are GS1 Application Identifier data
fields, as described by the GS1 specification.

SSCC Serial Shipping Container Code
The Serial Shipping Container Code is a GS1-128 code with Application Identifier (00). Unlike most
Application Identifiers, the SSCC Application Identifier and its associated data may not be combined with
other fields in the same barcode. Gs1-128 Above.

Options
Barcode128Text Y - if Yes adds human-readable text below the barcode.

Note that the data must always include a character at the position the check digit is required, if
Barcode-128GS1Checksum is set to Y, the check character will be replaced (not inserted).

https://courses.cs.washington.edu/courses/cse370/01au/minirproject/BarcodeBattlers/barcodes.html
https://www.gs1.org/standards/barcodes-epcrfid-id-keys/gs1-general-specifications

Merge | Barcode Options

page 191

•
•
•
•
•

Barcode128Esc N - enable the use of >8 to set a GS1-128 FNC1 code.
Barcode128CharacterSet 8859-1 - the encoding character set to use.
Barcode128-GS1 N - switch to GS1 variant of Barcode128. Sets Barcode128Esc to Y.
Barcode128-GS1CheckSum N - used when generating GS1 variant to automatically create a GS1 checksum.
Barcode128BarWidth 0 - set width of narrowest bar. See Barcode Bar Widths section above.

Merge | Barcode Options

page 192

DataMatrix
There are no user-configurable options for a DataMatrix barcode.

Merge | Barcode Options

page 193

•

EAN-13
Options:

BarcodeEANBarWidth 0 - set width of narrowest bar. See Barcode Bar Widths section above.

Merge | Barcode Options

page 194

Linear Barcodes
Linear barcodes are those that are typically a series of bars that is scanned left-to-right, as opposed to 2D
Barcodes which are 2-dimensional arrays of marks or dots (see the 2D Barcodes section below.) The
various supported linear barcodes are listed below, along with their available options.

Note that all these options can be set either in the associated DocOrigin configuration file (.prt), at Design
time using Object Tags, or at Merge runtime using script. See the examples below under Barcode Bar
Widths.
In DocOrigin barcodes are defined within a rectangular area - either a Field rectangle or a drawn static
Barcode rectangle. By default, most barcodes will automatically scale to fit within the entire rectangle.
So if you draw a 3"x3" rectangle, you'll get a barcode that's 3" high and 3" wide. You can override this
default behavior and supply an actual bar width - either in the .prt configuration file, via script, or directly
as a Tag property of the object from within Design. See the Barcode Bar Widths section below, and the
detailed list of supported barcodes below.

The height of a barcode is scaled to ensure that the entire barcode, including any human-readable
text that appears below it - fits within the margins of the Field or Barcode Label area.

The text Font of a barcode object or field is used when drawing any associated text under the barcode. This
includes typeface, size, bold, italic, etc.

Barcodes are printed with black bars, with the exception of the Pharma barcodes which will use the text
color as the bar color as well.

Merge | Barcode Options

page 195

MaxiCode
(As of 3.0.004.12)

It is expected that the major use of MaxiCode will be for shipping labels to be shipped by UPS.

The MaxiCode specification defines modes 0 through 6, but modes 0 and 1 are now obsolete. DocOrigin
can generate MaxiCode in Modes 2, 3, 4 and 5. Mode 6 is used for programming hardware devices and is
not supported in DocOrigin.

UPS labels use modes 2 and 3.

Merge expects the data for a MaxiCode field to be supplied in the following format for UPS labels:

aaaaaaaaa|bbb|ccc|Tracking Number|SCAC|shipper number|day of pickup|shipment id number|

Package n/x|weight|address validation|street address|city|state

bbb is a three-digit country code (ISO 3166-1); 840 meaning, USA for example.

Prior to version 3.1.002.06

if bbb is 840 (USA) then aaaaaaaaa is a 9-digit US zip code. 5 digit zip codes must be padded with 4
trailing zeroes.

if bbb != 840 then aaaaaaaaa is a 9-character postal code made up of any combination of digits 0-9
or A-Z, with trailing spaces to pad it to 9 characters long.

Beginning with version 3.1.002.06

if bbb is 840 (USA) then aaaaaaaaa is a 5-digit or 9-digit US zip code. No padding is required.

if bbb != 840 then aaaaaaaaa is up to 9 characters long, made up of any combination of digits 0-9 or
A-Z. It may have trailing spaces but they are not required.

ccc is a three-digit class of service.

Tracking Number and SCAC are required by UPS, the remaining fields are optional. Contact UPS for further
details about the content.

When a Mode 2 or 3 MaxiCode symbol is generated for UPS use, it is required to be pre-fixed with the
header:

[)><RS>01<GS>96

The data sequences are terminated with:

<RS><EOT>

The characters shown below as <RS> <GS> and <EOT> are ASCII control characters from the C0
control set. These characters are not printable characters and may present some challenges to
scanners. Many scanners will need to be programmed to send ASCII control characters to their
host. Specialized software may be required to capture control characters, and display them.

Merge | Barcode Options

page 196

As shown above, Merge expects the data items to be separated with | characters (the pipe symbol). Merge
will replace the pipe symbols with the ASCII <RS> character as required. DocOrigin Merge will insert the
header and trailer characters as necessary.

Data supplied to Merge, in a MaxiCode field, would look like:

123456789|840|001|1Z12345678|UPSN|06X610|159|1234567|1/2|3.1|Y|634 MAIN ST|YORK|PA

Data from a scanned, properly generated, Mode 2 MaxiCode symbol might look like:

[)><RS>01<GS>96123456789<GS>840<GS>001<GS>1Z12345678<GS>

UPSN<GS>06X610<GS>159<GS>1234567<GS>1/2<GS>3.1<GS>Y<GS>634 MAIN

ST<GS>YORK<GS>PA<RS><EOT>

DocOrigin provides two MaxiCode configuration settings: MaxiCodeMode and MaxiCodeCharacterSet.

MaxiCodeMode defines which mode of MaxiCode barcode to produce. It can be set in the .prt file or via
setParm. The default value is auto. With that setting in effect:

Prior to version 3.1.002.06

DocOrigin Merge will examine the Zip/Postal code provided, if it is numeric it will generate a Mode 2
symbol. If it contains any non-numeric characters it will generate a Mode 3 symbol.

Prior to version 3.1.002.06, we recommend that you explicitly set MaxiCodeMode.

Beginning with version 3.1.002.06

DocOrigin Merge will examine the Zip/Postal code provided, and the Country Code, if the Country
Code is 840 (USA), and the Zip Code is 5 numeric digits or the Zip Code is 9 numeric digits, it will
generate a Mode 2 symbol. If the Country Code is not 840, It will generate a Mode 3 symbol.

Other valid values for MaxiCodeMode are: 2, 3, 4 or 5 which force the generation of a symbol of the
appropriate mode.

MaxiCodeCharacterSet defines the character encoding that the data will be translated to before the
MaxiCode symbol is created. The default is "8859-1". Other valid values can be found by running "uconv
-l" as supplied with this install of DocOrigin. Encodings which produce NULL bytes will not create correct
MaxiCode symbols. MaxiCodeCharacterSet can be defined in the .prt file or set via setParm.

Merge | Barcode Options

page 197

PDF417
There are no user-configurable DocOrigin options for a PDF417 barcode.

Merge | Barcode Options

page 198

•

Pharmacode
This barcode is used in the pharmaceutical industry.

Options:

BarcodePharmacodeBarWidth - set the width of the narrow bar, wide bar, and gap. See Barcode Bar Widths.
Default is .5mm 1.5mm 1.2mm

Merge | Barcode Options

page 199

•

Pharmacode 2Track
This barcode is used in the pharmaceutical industry. The 2Track variant features half-height bars as well as
full-height bars.

Options
BarcodePharmacode2TrackBarWidth - Widths of bar and gap
Default is .5mm .6mm

Merge | Barcode Options

page 200

•

•

•

•

•
•

PostNet
This barcode was used by the US Postal Service. It is deprecated. Users are strongly encouraged to use the
USPS Intelligent Mail barcode. PostNet is for U.S. addresses only. It supports zip (5 digits), zip+4 (9 digits),
and zip+4 + "delivery point" (11 digits total). All formats encode an internally generated check digit as well.

Options
BarcodePostNetBarWidth n - set the width of a bar. n should be in units understandable by DocOrigin, see
Script Units. 0 means auto calculate bar width to make the rendered barcode fit the designed width.
BarcodePostNetRatio n - sets the space/bars ratio. n should be a decimal number somewhere between 1 and 2
to fit width limits. 0 means auto-calculate space width to make the rendered barcode fit the designed width.
(As of 3.1.002.07)

Some useful use cases are:

Use "BarcodePostNetBarWidth n" and "BarcodePostNetRatio 0" - auto calculate space width to make the
rendered barcode occupy barcode designed width.
Use "BarcodePostNetBarWidth 0" and "BarcodePostNetRatio n" - auto calculate bar and space widths to make
the rendered barcode occupy the barcode designed width and keep the desired space/bar ratio.

Note that:

The width of the bars must be between 0.015" and 0.025".
The width of the bar/space pairs must be between 0.045" and 0.050".

Consider BarcodePostNetBarWidth .02in BarcodePostNetRatio 1.4

Merge | Barcode Options

page 201

•
•
•

QR Code

Options
QRCodeLevel M - error correction levels - L (Low), M (Medium), Q (Quartile), H (High)
QRCodeCharacterSet 8859-1 - the encoding character set to use.
QRCodeMode 8BIT - can be KANJI, 8BIT, ALPHANUMERIC, NUMERIC, FORCEBINARY

Merge | Barcode Options

page 202

•

UPC

Options
BarcodeUPCBarWidth 0 - set width of narrowest bar. See Barcode Bar Widths.

Merge | Barcode Options

page 203

•
•
•

USPS-IM
The USPS Intelligent Mail barcode.

Options
BarcodeUSIMText Y - if Yes adds human-readable text above the barcode.
BarcodeUSIMTextBelow Y - if Yes adds human-readable text below the barcode.
BarcodeUSIMBarWidth 0 - set width of narrowest bar. See Barcode Bar Widths.

Merge | Zebra Internal Barcodes

page 204

•
•
•
•
•
•

Zebra Internal Barcodes
The Zebra label printers are capable of formatting several types of barcodes given only the data to be
encoded and some formatting properties.

Formatting properties like:

the type of barcode to generate (3 of 9, 2 of 5, etc.)
whether the human-readable text should be printed above or below the barcode
whether the printer should calculate and append a check digit
how tall the vertical bars should be
how wide a narrow bar should be
the font (typeface and size) that should be used for any human-readable text

DocOrigin provides a mechanism for specifying the properties needed to lay out the barcode in exactly the
way the user wishes.

The DocOrigin 3.1 install set includes a fragment library named "Default-Zebra.xatwlib". That library
includes one barcode field and one barcode label for each of the 8 barcode types that DocOrigin now
supports as Zebra internal barcodes. Using the Insert/Fragment menu command or the Fragment button
on the object toolbar is the simplest way to add a Zebra internal barcode field or label to your form. Each
fragment definition includes all of the object tag properties that apply to the particular barcode type.

Once you've embedded a fragment you may modify any of those properties to fit your requirement.

The following table describes the set of properties available to the user for linear (one-dimensional)
barcodes.

Although these properties are often maintained as Object Tags in DocOrigin Design, they can also be
controlled by settings in the configuration (.prt) file or be arguments on the command line. As always, the
object tag has the highest priority, an argument on the command line is next and a setting in the
configuration file has the lowest priority.

Property Name Description Allowable settings Default

ZplType Barcode type Code39, Code128,
2OF5, I2OF5,
2OF5IND, UPC-A,
DataMatrix, and
QRCode

Code39

ZplCheckDigit Should the barcode have a check digit? Yes or No No

ZplPrintText Should the text be printed along with the
barcode?

Above, Below, and
None

Below

Merge | Zebra Internal Barcodes

page 205

Property Name Description Allowable settings Default

ZplPreciseText Set to Yes if you would like the human-
readable text to be drawn the actual size
specified in the object.

Yes or No Yes

ZplNarrowWidth Width of a narrow bar (units: inches, cm, or
microns). If set to zero, the width of the
narrow bar is calculated based on the object's
width.

0

ZplRatio The wide bar to narrow bar width ratio. 2.0 to 3.0 3.0

ZplBarHeight Height that a bar should be drawn (units:
inches, cm, or microns). If set to zero, the
height is calculated based on the object's
height.

0

ZplMode Mode to draw barcode in. "N" = no selected
mode, "U" = UCC
Case mode, "A" =
Automatic, "D" = UCC/
EAN Mode

A

ZplDerivedText Should the escape, start, and stop characters
be shown in the printed text?

Yes or No No

ZplConvertToFull
Ascii

Should the text provided be converted to the
Code39 full ASCII encoding?

Yes or No Yes

The following table describes some additional properties used by the 2-dimensional barcodes, Data Matrix
and QR Code.

Property Name Description Allowable settings Default

ZplQuality
(DataMatrix)

The amount of data that is added to the
symbol for error correction.

0, 50, 80 100, 140, and
200

200

Merge | Zebra Internal Barcodes

page 206

Property Name Description Allowable settings Default

ZplQuality
(QRCode)

Reliability quality level. "H" = ultra-high level,
"Q" = high level,
"M" = standard, "L" =
high density

Q

ZPlColumns Number of columns to encode. If set to zero,
the number of columns is calculated based on
the amount of data.

9 to 49 when ZplQuality
is 0 to 140 (must be an
odd integer) 10 to 144
when ZplQuality is 200
(must be an even
integer)

0

ZplRows Number of rows to encode. If set to zero, the
number of rows is calculated based on the
amount of data.

9 to 49 0

ZplEscape Escape character to be used when embedding
special control sequences within the field
data. This is used only when ZplQuality is set
to 200.

any character ~

ZplAspect The aspect ratio to use when laying out this 2-
D barcode.

"1" = square, "2" =
rectangle

1

ZplModel "1" = original, "2" =
enhanced

2

ZplMagnification Magnification factor for barcode dots. If set to
zero, the magnification factor is calculated to
be the maximum that will keep the barcode
within the bounds of the object.

1 to 10 0

ZplMode Character mode for the data in the barcode. If
set to "C" the mode is calculated based on the
text provided for the object.

"C" = calculated "N" =
numeric, "A" =
alphanumeric, "B" = 8-
bit Latin/Kana
character set, "K" =
Kanji

C

An additional property that affects Zebra internal barcodes is named "ZplPreciseText". Set it to "Yes" if you
would like the human-readable text to be drawn at the actual size specified in the object. If this is set to

Merge | Zebra Internal Barcodes

page 207

"No" the printer will magnify the text using the same scale factor in use for the vertical bars. The text can
get very unattractive because very often the font is a built-in bitmapped font.

"ZplPreciseText" is set to "Yes" in the Zebra configuration files shipped with DocOrigin. It's unlikely to be
overridden via an object tag. However, it may be if you want to use the printer's built-in font scaling for a
single object.

The set of properties (Object Tags) that apply to a particular barcode varies depending on the type of
barcode. Below are tables describing the set of properties (Object Tags) that apply to each barcode type.

Properties by Barcode Type

Code 39 (3 of 9)

Property Name Description Allowable settings Default

ZplType Barcode type Code39 -

ZplCheckDigit Should the barcode have a check digit? Yes or No No

ZplPrintText Should the text be printed along with the
barcode?

Above,
Below, and None

Below

ZplPreciseText Set to Yes if you would like the human-
readable text to be drawn the actual size
specified in the object.

Yes or No Yes

ZplNarrowWidth Width of a narrow bar (units: inches, cm, or
microns). If set to zero, the width of the
narrow bar is calculated based on the object's
width.

0

ZplRatio The wide bar to narrow bar width ratio. 2.0 to 3.0 3.0

ZplBarHeight Height that a bar should be drawn (units:
inches, cm, or microns). If set to zero, the
height is calculated based on the object's
height.

0

ZplDerivedText Should the escape, start and stop characters
be shown in the printed text?

Yes or No No

ZplConvertToFull
Ascii

Should the text provided be converted to the
Code39 full ascii encoding?

Yes or No Yes

Merge | Zebra Internal Barcodes

page 208

Code 128

Property Name Description Allowable settings Default

ZplType Barcode type Code128 -

ZplPrintText Should the text be printed along with the
barcode?

Above, Below, and
None

Below

ZplPreciseText Set to Yes if you would like the human-
readable text to be drawn the actual size
specified in the object.

Yes or No Yes

ZplNarrowWidth Width of a narrow bar (units: inches, cm, or
microns). If set to zero, the width of the
narrow bar is calculated based on the object's
width.

0

ZplRatio The wide bar to narrow bar width ratio. 2.0 to 3.0 3.0

ZplBarHeight Height that a bar should be drawn (units:
inches, cm, or microns). If set to zero, the
height is calculated based on the object's
height.

0

ZplMode Mode to draw barcode in. "N" = no selected
mode, "U" = UCC
Case mode, "A" =
Automatic, "D" = UCC/
EAN Mode

A

Standard 2 of 5

Property Name Description Allowable settings Default

ZplType Barcode type 2OF5 -

ZplPrintText Should the text be printed along with the
barcode?

Above, Below, and
None

Below

ZplPreciseText Set to Yes if you would like the human-
readable text to be drawn the actual size
specified in the object.

Yes or No Yes

Merge | Zebra Internal Barcodes

page 209

Property Name Description Allowable settings Default

ZplNarrowWidth Width of a narrow bar (units: inches, cm, or
microns). If set to zero, the width of the
narrow bar is calculated based on the object’s
width.

0

ZplRatio The wide bar to narrow bar width ratio. 2.0 to 3.0 3.0

ZplBarHeight Height that a bar should be drawn (units:
inches, cm, or microns). If set to zero, the
height is calculated based on the object’s
height.

0

Interleaved 2 of 5

Property Name Description Allowable settings Default

ZplType Barcode type 2OF5 -

ZplCheckDigit Should the barcode have a check digit? Yes or No No

ZplPrintText Should the text be printed along with the
barcode?

Above, Below or None Below

ZplPreciseText Set to Yes if you would like the human-
readable text to be drawn the actual size
specified in the object.

Yes or No Yes

ZplNarrowWidth Width of a narrow bar (units: inches, cm, or
microns). If set to zero, the width of the
narrow bar is calculated based on the
object's width.

0

ZplRatio The wide bar to narrow bar width ratio. 2.0 to 3.0 3.0

ZplBarHeight Height that a bar should be drawn (units:
inches, cm, or microns). If set to zero, the
height is calculated based on the object's
height.

0

Merge | Zebra Internal Barcodes

page 210

Industrial 2 of 5

Property Name Description Allowable settings Default

ZplType Barcode type 2OF5 -

ZplPrintText Should the text be printed along with the
barcode?

Above, Below, and
None

Below

ZplPreciseText Set to Yes if you would like the human-
readable text to be drawn the actual size
specified in the object.

Yes or No Yes

ZplNarrowWidth Width of a narrow bar (units: inches, cm, or
microns). If set to zero, the width of the narrow
bar is calculated based on the object's width.

0

ZplRatio The wide bar to narrow bar width ratio. 2.0 to 3.0 3.0

ZplBarHeight Height that a bar should be drawn (units:
inches, cm, or microns). If set to zero, the
height is calculated based on the object's
height.

0

UPC-A

Property Name Description Allowable settings Default

ZplType Barcode type UPC-A -

ZplPrintText Should the text be printed along with the
barcode?

Above, Below, and
None

Below

ZplNarrowWidth Width of a narrow bar (units: inches, cm, or
microns). If set to zero, the width of the
narrow bar is calculated based on the object’s
width.

0

ZplBarHeight Height that a bar should be drawn (units:
inches, cm, or microns). If set to zero, the
height is calculated based on the object’s
height.

0

Merge | Zebra Internal Barcodes

page 211

Data Matrix

Property Name Description Allowable settings Default

ZplType Barcode type DataMatrix -

ZplQuality The amount of data that is added to the
symbol for error correction.

0, 50, 80 100, 140,
and 200

200

ZplColumns Number of columns to encode. If set to zero,
the number of columns is calculated based on
the amount of data.

9 to 49 when
ZplQuality is 0 to 140
(must be an odd
integer) 10 to 144
when ZplQuality is
200 (must be an even
integer)

0

ZplRows Number of rows to encode. If set to zero, the
number of rows is calculated based on the
amount of data.

9 to 49 0

ZplEscape Escape character to be used when embedding
special control sequences within the field data.
This is used only when ZplQuality is set to 200.

any character ~

ZplAspect The aspect ratio to use when laying out this 2-
D barcode.

"1" = square, "2" =
rectangle

1

QR Code

Property Name Description Allowable settings Default

ZplType Barcode type QRCode -

ZplModel "1" = original, "2" =
enhanced

2

ZplMagnification Magnification factor for barcode dots. If
set to zero, the magnification factor is
calculated to be the maximum that will
keep the barcode within the bounds of the
object.

1 to 10 0

Merge | Zebra Internal Barcodes

page 212

Property Name Description Allowable settings Default

ZplQuality Reliability quality level. "H" = ultra-high level,
"Q" = high level, "M" =
standard, "L" = high
density

Q

ZplMode Character mode for the data in the
barcode. If set to "C" the mode is
calculated based on the text provided for
the object.

"C" = calculated, "N" =
numeric, "A"
= alphanumeric, "B" =
8-bit
Latin/Kana character
set, "K" = Kanji

C

Merge | Auto Translate

page 213

•
•
•
•

•

Auto Translate
(as of 3.2.001.01)

The DocOrigin Auto Translate feature is a way to create a Form whose fixed Text can be switched from
one language to another dynamically.

The Auto Translate mechanism requires that labels (fixed text objects) on the form be defined with text
values that begin with a tilde (~), for example as ~address. A translation table, in an external ini file, must
be created and have sections for each language to be supported.

When Merge is run and the -Translate and -Language options (see below) are specifed, the resulting
documents generated by Merge will have the ~text values (e.g. ~address) replaced by the appropriate
translated text.

Merge strips off the leading ~ and looks up the remainder of the text in the nominated translation ini file.
The ~text value can have blanks in it, but no leading or trailing spaces, and no equals (=) sign.
The ~text value must match an entry in the translation ini file; that match is case insensitive.
For example, the label's text value could be ~First Name and the ini entries could look like:

first name = Prénom

If no translation is found, Merge leaves the original ~text value in place.

A Translate Example
An example of this feature, called Sample_Translate, can be found in the DocOrigin/DO/Samples folder.
In this form, the ~FirstName, ~LastName, ~Address, and ~Phone text will be automatically replaced with
the appropriate language-specific wording.

The Sample_Translate.ini file looks like this:

[EN]
; English text
FirstName = First Name
LastName = Last Name
Address = Address
Phone = Phone Number
LanguageName = English

[FR]
; French text
FirstName = Prénom
LastName = Nom de famille
Address = Adresse
Phone = numéro de téléphone
LanguageName = Français
...

And the test form's sample data stream, Sample_Translate.xml, is like this:

Merge | Auto Translate

page 214

•
•

<?xml version="1.0" encoding="UTF-8"?>
<XmlData>
 <Document>
 <Pane1>
 <First>Marion</First>
 <Last>Weaver</Last>
 <Address>2364 Pollock Rd, Ottawa</Address>
 <Phone>613 555 1515</Phone>
 <LANG>EN</LANG>
 </Pane1>
 </Document>
 <Document>
 <Pane1>
 <First>Elizabeth</First>
 <Last>Lévesque</Last>
 <Address>82 Boulevard de Clichy, Paris</Address>
 <Phone>+33 1 53 09 82 82</Phone>
 <LANG>FR</LANG>
 </Pane1>
 </Document>
</XmlData>

The Sample_Translate.xatw form looks like this:

The translate function is triggered by two Merge command-line options:

-Translate - which tells Merge which translation ini file to use.
-Language - which tells Merge what Language to use.

In the simplest case, you would just set -Language to (say) "FR" to get the French version of the text. This
causes Merge to look in the translation ini file for the [FR] section, and match the names in that section to
the ~text on the form. For example, the FirstName value under the [FR] section is Prénom, so the text for
~FirstName on the form will be set to "Prénom".

The -Language value can also be set to a named Field on the form by using the standard [name] syntax. So
if you loaded the field LANG (which you'll notice is in the data file), then set:

-Language "[LANG]"

Merge | Auto Translate

page 215

This will use the value of the LANG form field as the key to the translation.

Alternatively, and likely more easily, you can reference the LANG data node directly by using the syntax:

-Language "[!Data LANG]"

This finds the data value for the LANG item in the data stream directly, rather than requiring a Field on
the form.

In the Sample_Translate example above, the data set has data for several documents - each with a
different LANG value, so each document is translated to a different language.

Setting Field Values
So far we've talked about Labels but you can also configure any form Field to get an automatic translation
value by using the following mechanism. In the example form, you'll see a field at the top called Field1. In
the Design, that field has a Tag of TranslateKey set to a value of LanguageName.

Any field with a TranslateKey tag will use that tag's value (in this case "LanguageName") as the key to
lookup in the translation ini file.

In our ini file above, we have

LanguageName = English ...
LanguageName = Français

So Field1's value will be set to either "English" or "Français" depending on the language active at the time.

This mechanism can be useful where the ~text mechanism gets too crowded. I.e. where the text label is
only a few characters wide and you don't have enough room for meaningful ~text. The disadvantage from
the form designer's perspective is that unlike the normal ~text label scheme, when using fields there isn't
any helpful text visible on the form to make the form more readable to the designer.

Hindsight tells us that the example would have been better served, and less confusing if it had
used something like "Title" rather than "LanguageName" and had the translate ini file have:

Title = The Document in English
Title = Le Document en Français

The TranslateKey has nothing to do with specifying which language to use. It merely identifies the
key of the text to lookup in the translation ini file.

Hint

If your data stream doesn't have a simple data field that indicates the language key, you may need
a bit of script to determine the key. If so try this simple workaround:

Merge | Auto Translate

page 216

See Also

-language -translate

See Sample in User Guide (User Login Required)

Auto Translate Sample Collateral

Add an invisible field to your form (perhaps called MYLANG). Add script to this field using the Start
of each Document event to set the value of MYLANG based on whatever logic you need to make
that determination. Now you can use the -Language [MYLANG] option to trigger all the other
auto-translate features. (Make sure MYLANG isn't a node name in your data stream, or it will get
that value instead of your computed one!)

https://docs.docorigin.com/design/feature-examples/auto-translate

Merge | Auto Email

page 217

Auto Email
DocOrigin includes a feature to create sophisticated email messages and send them automatically from
Merge. Using DocOrigin Design you can define the message body using many of the same drawing tools as
used for other form designs. You can define the Email To, Cc, Bcc, Subject, and Attachment information as
well. Email addresses can be pulled directly out of the data stream, or from an applicable form field. The
email message can include images, links, and the usual bold/italic/font handling.

The same DocOrigin form file that contains the definition for a PDF document can also include all the
necessary information to send that PDF as an attachment to a recipient. Or you can create only the email
message itself, with or without additional attachments.

As of version 3.1.002.12, a newer, more integrated version of emailing has been included - as described
below. Note that it is also still possible to code the sending of emails via the _sendmail script function. The
Auto Email feature allows this to be done without employing script.

An example of the Auto Email feature can be seen in the DocOrigin/DO/Samples folder. The
Sample_InvoiceEmail.xatw form can be opened in Design and tested using the PDF Preview command. If
you want to actually send the emails (presumably to yourself for testing), you will need to ensure your
system is set up for sending emails - see the SendMail page for more information on that.

Sample_InvoiceEmail uses its own sample data file, called SampleInvoice2.xml. It includes the recipient
email address in it's <InvoiceHeader> <Email> data field. In this example, the email goes to a fictional email
address (@example.com) - but you can copy and edit that .xml data file to send them to your own email
address.

You can also preview the emails right on your own computer by adding the hold:yes option to the Mail
Options setting in the Sample_InvoiceEmail form. The hold:yes option saves the email files (.eml) in the
$U/Outbox/Hold folder. If you have a local email client on your desktop (such as Outlook) you can double-
click on the eml file and view the actual email generated by DocOrigin.

How it Works
If you open the Sample_InvoiceEmail form, you'll see an _email_5 page in the form. The top of the page
looks like this:

Merge | Auto Email

page 218

In this sample file, we've set the To address to the Email data field. This could also be a reference to any
field within the current form using the usual [Email] notation. In this case, the Email data node has not
been loaded into the form, so we just reference the data field directly. The To will be set to the value in the
Email field, which is Kelly@example.com as shown below.

<InvoiceHeader>
 <CustomerID>Kelly</CustomerID>
 <Email>Kelly@example.com</Email>

The Attachments field has been set to [!PDF]. This is a special embedded text option in Merge that fetches
the file name of the PDF file that Merge has just created using the other pages in the form. The result is
that when the email is sent, the sample invoice is attached to the email.

The Mail Options are for you to pass along any special options to the DocOrigin SendMail module. As
suggested above, you can set hold:yes to cause the email to be left in the $U/Outbox/Hold folder instead
of emailing it right away. This is handy for testing.

@example Domain

According to the Wikipedia article: example.com, example.net, and example.org are second-level
domain names reserved by the Internet Engineering Task Force through RFC 2606, Section 3,1 for
use in documentation and examples. They are not available for registration. So you can use them
safely for test email addresses. Of course, you can also specify a -testMail in your
DocOriginSendMailServer.prm as an alternate (an override) address for all calls to _sendmail().

mailto:Kelly@example.com
http://example.com
http://example.net
http://example.org

Merge | Auto Email

page 219

The Plain Text Msg is an optional text message to include in the email just in case the recipient has a very
old email system that doesn't handle a normal HTML email message.

The bottom portion of the page is where you can create the main email message for your customer.

In the email world, the main body of the email is typically created in HTML. Unfortunately, there are many
email client programs your customer might be using to read email, and each supports a different subset of
the HTML language. For this reason, DocOrigin has created a special internal EML driver that converts the
message to a very generic version of HTML suitable for most email systems. When you run Merge against a
form such as this Sample_InvoiceEmail.xatw, that internal EML driver is automatically used to create an
appropriate HTML email message body from every pane in the _email_5 page (other than the _header_
pane which it uses for all the To/CC/Subject fields)

In our example there are two panes - the first just has the XYZ logo in it (more about this later on). The
second pane is a typical text message to the customer, with inline substitutions of various field values from
within the rest of the PDF document (on Page1 somewhere).

There are some additional rules regarding what Design constructs you can use in an HTML email
message - see below.

You'll notice that the page width of this _email_5 page is somewhat narrower than most documents. The
page width is used to control the final HTML message width. In this case to 5 inches (hence the name!) The
message will be centered in the email viewer window (phone, tablet, browser, Outlook, etc.) Statistically
today, most emails are read on cellphones. A 5" wide email is fairly convenient.

Below you'll see how the email looks in Microsoft Outlook:

Hint - it's good to include a plain text message, as some spam filters may penalize your message if
it doesn't include a plain text message.

Merge | Auto Email

page 220

•

•

Adding Auto Email to a Form

To add the auto email feature to a form, use the Insert>Fragment command, or the button on the
toolbar. Find the Default-Fragments library and the _email_5 page within that library and embed it in
your design. (See the Fragments section for details on using Fragment Libraries.)

Designing DocOrigin Emails
There are certain rules about building email messages using DocOrigin. As noted above, the HTML
supported by email systems is not as flexible as the HTML4 and HTML5 used in web browsers. The
following information describes how DocOrigin can be used to create emails that will be supported by
most common email clients.

Emails in Design are constructed using a series of panes. Within each pane, you can use Text Labels, Fields,
Groups, and Images. You cannot use Rectangles, Lines, or Barcodes.
The Labels, Fields, or Images must be drawn as a single horizontal row of objects within each pane. You can,
of course, have several panes, hence several "rows" of these objects. You can also use the Group object as a
container for multiple vertically-stacked Labels, Fields, or Images. Note that groups cannot have side-by-side
elements, only a vertical stack.

If you are creating an email, but are not creating any attachment PDF to go with it, you can simply
delete the existing default blank Page1 from a new form design. You can still Merge this using the
PDF configuration (Default-PDF.prt) or use Design's PDF Preview command to generate the email.
Regardless of which DocOrigin configuration you use, the _email_5 page is always processed using
the EML driver in Merge.

Merge | Auto Email

page 221

Here is a simple example in Design. It consists of a pane with three blocks of information: 1. a multi-line
label; 2. a group (the rectangle) with 3 objects drawn vertically - two labels and an image; 3. finally at the
right, a single image.

Here is the result as it would appear in an email message:

Images in Emails
When adding images to an email, the image itself must reside on your website, i.e. be URL-accessible. It
will NOT be embedded into the message. You must add an Url tag to the image object in Design, specifying
the location where your image can be found on your website. You should also include an Alt tag with
alternate text to be displayed if the image cannot be loaded for some reason. (Keep in mind that some
email recipients may block downloading of images in their email system.) For our sample above, we have
set the following 2 tags on the images:

Alt The DocOrigin Logo
Url http://www.docorigin.com/DocOriginLogo.jpg

Links
Any object can have a web link added to it by setting the Link tag on that object. This means you can make
images, fields, or text labels "clickable" so as to take the user to a webpage of your choosing.

Note that you can make the borders visible on any of these objects, and you can set a background
color on any object (e.g. in this case, light gray on the Group object). Using object borders you can
also create a horizontal line by selecting only the top or bottom Edge of the pane or some object
within it.

Merge | Auto Email

page 222

1.

2.
3.

4.

5.
6.

7.

8.
9.

10.

11.

12.

Hyperlinks within a text label are also supported for Email generation. To do this, just highlight a section of
a text label, right-click and select TagAs > Link from the popup menu.

Testing Your HTML Email
Like all things, but especially email that can slip out into the world, YOU MUST TEST THOROUGHLY. We
can't do that for you but we do provide some means for you to 'engage'.

Use the aforementioned hold:yes option to keep the email from escaping until you have finished
testing.
Use somebody@example.com as test email address to keep email from escaping.
If you are forgetful, use the -testMail option in your $O/DocOriginSendMailServer.prm file to
redirect mail to a test address, hopefully, yours!
Enjoy the new buttons on the Design status bar to look at what you're producing.

It's always good to pore over the log file!
The <Html> button will give you a good view of the HTML email body. When the EML output
configuration is used (often automatically) it produces both .html and .eml.
The <Eml> button will try to launch the generated .eml file. Hopefully, you have a program (often
Outlook) associated with the .eml extension. (fyi: Since I don't have Outlook, I have installed the free
CoolUtils MailViewer and have associated that with .eml. So far it has worked 'well enough' for me to
see my various issues.) If you have put .eml files in the Hold folder you can review them there after
the fact.
Don't forget to check out your plain text messages too. You are defining those, right!
Of course you can also redirect the email to yourself and see it in your own email client.
Get help! The folks at Email on Acid have lots of advice, including testing services. I'm sure we've run
across others during development too. Do test across the variety of email clients that you might
expect your recipients to have.
fyi: this link might interest you: Email Client Market Share.
A tip. If you text edit .eml files you'll see lots of encoding, lots of =3D character sequences. You can
make that easier on yourself by specifying Encodehtml:8bit in the Mail Options entry.
A tip. During development specify MailScanFolder:$$F in the Mail Options and you'll have the
generated files more local to your work, not off in some Outbox folder. And you will be even more
certain to take your emails out of accidental processing by DocOriginSendMailServer.

Beacons
It's quite common practice to include "beacons" in email. These are typically 1 pixel x 1 pixel transparent
images which have an associated URL that automatically "calls back" to the host system to report that the
email had been looked at, by whom, and related to what account, etc. Since these are HTML-based emails,
that is no problem at all.

For your greater understanding, what is happening is that URL is processed by the email client/browser. It's
in a <img...> element. The server should (must!) respond with an image. It can be small. The sample below
does return a 1x1 pixel transparent image. If you don't return an image your user may get a red X.

https://www.coolutils.com/MailViewer
https://www.emailonacid.com/
https://www.litmus.com/email-client-market-share/

Merge | Auto Email

page 223

To insert a beacon into your HTML email design simply put an image label in one of the panes and define
an Url tag for that image. The Url tag refers to a web server request handler for the beacon's message. For
example:

Url: https://example.com/beacon.php?[!
Time]&data=[Transaction_ID]&account=[Account_ID]...
 ...&user=[CustomerName]

My example uses PHP but you can use whatever web technology you like. As you can see, you can embed
information to pass to the "beacon" using any of the usual Auto/Embedded Fields notation. When Merge
resolves the URL, it automatically encodes it such that you don't have to worry about breaking the url-
encoded syntax with your field inserts. The PHP will receive it in unencoded fashion.

Presumably, that PHP will extract all the elements in the beacon's message, and likely store them away in a
database, possibly initiating further server-side action as befits the host's desires. It is not possible for
DocOrigin to supply that custom server-side technology. The following is a mere 'proof-of-concept' PHP to
show that the email-embedded beacon is doing its job.

Download the sample beacon.php (as a .txt file) below. (Depending on your browser, the text file may
open in your browser. Then, right-mouse-click on the page and select Save As...)

beacon.txt

Right-mouse-click on the 1x1transparent.png image below and select Save Image As... (Note: a frame
was added to see the small, white image and select)

Just the HTML Please
Maybe you just want this cellphone-friendly HTML to email later, or to post on a website. Clearly, that HTML
is generated; you can see it via the <Html> button in the status bar. But normally it resides with an obscure
name in the DocOrigin temp files folder. You can get just the HTML into a known place by using the
Default-EML.prt output configuration directly and specifying the -EMLOutputFile=xxxx.html option. The
desired HTML will be placed in the desired location with the desired name.

See Also

_sendmail scripting alternative. SendMail for configuring the DocOrigin email subsystem.

https://docs-admin.docorigin.com/download/attachments/44729194/beacon.txt?api=v2&modificationDate=1664503324000&version=1

Merge | Global Fields

page 224

1.
2.
3.

Global Fields
Global fields may be confusing for the unprepared user since they are different from typical global
variables in common programming languages. Actually, they are not variables at all.

As you can see in The Merge Algorithm global fields processing is done after the Document DOM has been
created.

The algorithm is as follows:

Merge loops through all empty global fields in a document.
If found one it tries to find the nearest suitable value for this field.
The nearest means it gets field parent and tries to find the same global field in a subtree. If
successful it copies the value. If failed it gets one level up and retries.

The implication here is that if some global field is missing in an appropriate data location it gets filled with
not the very first global value in a document tree but the nearest (see above) one.

Note, that if Merge can find the actual value for a field it doesn't do any special handling.

Let's examine one example, see image below.

EmptyChild pane is missing G1 data so it gets filled with G1 data from Child1 pane and not from Top
pane.

Merge | Auto/Embedded Fields

page 225

•
•
•

Auto/Embedded Fields
Automatic fields are form fields that automatically supply a field value, such as the current date or current
document number. These fields are distinguished by a "$" (dollar sign) as the first character of the field
name. So for example, a field named $DocNum would automatically display the current document
number. Since these fields are filled in at data merging time, values that are known only after pagination is
completed are not available as $-automatic fields, but they are available as [!embedded] field references.

Embedded fields are metatags within a text label where data is automatically inserted. The embedded
metatag can be either an existing field name on the form (such as [customerName] or a "!" (exclamation
mark) character followed by one of the Automatic Fields specified below:

For example:

"Today is [!Date MMMM dd, yyyy]." becomes "Today is March 05, 2016."
"The current page is [!PN] of [!PC]." becomes "The current page is 3 of 5."
"Dear [customerName]:" becomes "Dear Fred:"

Automatic Field Embedded Field Description

[FieldName] Value of the form field or label (label added in
3.1.002.12) called FieldName.

[!PageNum] Current page# within the document.

[!PN] Same as [!PageNum].

[!PageNumForm] Current page# within the form. (Added in
3.1.002.02)

[!PNF] Same as [!PageNumForm].

[!PageCount] Total # of pages within this document.

[!PC] Same as [!PageCount].

[!PageCountForm] Total # of pages within this form. (Added in
3.1.002.02)

[!PCF] Same as [!PageCountForm].

$DocNum [!DocNum] Current document# being generated (starts at 1).

$DN [!DN] Same as $DocNum or [!DocNum].

Merge | Auto/Embedded Fields

page 226

Automatic Field Embedded Field Description

$Date [!Date fmt] Today's date. $Date uses that field's Picture
formatting, !Date uses picture format fmt or
defaults to yyyyMMdd format.

$Time [!Time fmt] Current time. $Time uses that field's Picture
formatting, !Time uses picture format fmt or
defaults to hhmmss.

$DateTime [!DateTime fmt] Today's date and time. $DateTime uses that
field's Picture formatting, !DateTime uses picture
format fmt or defaults to yyyyMMddhhmmss
format.

$FormFile [!FormFile] Fully qualified form file name.

$FormPath [!FormPath] Path of the form file name (without the form file
name).

$FormName [!FormName] Form file name (without the path or extension).

$FormNameExt [!FormNameExt] Form file name and extension (if provided).

$DataFile [!DataFile] Fully qualified data file name.

$DataPath [!DataPath] Path of the data file name (without the data file
name).

$DataName [!DataName] Data file name (without the path or extension).

$DataNameExt [!DataNameExt] Data file name and extension (if provided).

[!Base64 name] Converts the value of a named Field or Label to
an encoded base64 string. (Added in 3.1.002.10)

$Cachekeyword [!Cache keyword] Value from the -cache keyword:value command
line option.

[!Data name] Fetch data directly from the Data file. 'name' can
be either a simple node name, or a compound
name in dotted notation. If name is '*' the name
of the current object (Field or Label) will be used.
(Added in 3.2.001.01)

Merge | Auto/Embedded Fields

page 227

•

•

•

•
•

Automatic Field Embedded Field Description

[!Profile key] The value from an external profile file. For values
under an profile file section, use section.key to
reference. See Profile Files.

[!Session name] Fetch data from the current Session. If name is '*'
the name of the current object (Field or Label) will
be used. See Session. (Added in 3.2.001.01)

[!Env name] The value from environment variables. If name is
'*' the name of the current object (Field or Label)
will be used. (Added in 3.2.001.01)

[!Field name] Synonym to [FieldName]. (Added in 3.2.001.01)

[!Auto name] Synonym to autofields. Added just for
consistency. Example: [!Auto DocNum]. (Added in
3.2.001.02)

All calls to date and time functions use a common date stamp, which is the time and date when the Merge began
running. A call to $Time 20 seconds into the run will return the same time as a call at the beginning.
The $Date, $Time and $DateTime fields can be formatted using the available field format options for these types
of fields. (As of 3.0.001.02)
To have a formatted date embedded in a text label, create a (possibly hidden) $Date field that correctly formats
the date, then references it in the text label as in "Today is [$Date]".
File names will not include a file extension unless one was passed on the Merge command line.
The -cache command line option allows keyword:value pairs to be passed from the calling application to the
form. An automatic or embedded reference to "keyword" returns the corresponding value.

See Also

 Object Tags Direct Data Binding.

Merge | Merge Licensing Info

page 228

•

•
•
•

•
•

•

•

Merge Licensing Info
DocOrigin requires a license key file to enable the product features.

Without a valid license key file, DocOrigin Merge will emit an "Evaluation" spoiler stripe across all pages of all
generated documents.
Without a valid license key file, some DocOrigin programs will refuse to run.
A license key file may not allow all features to be accessed -- based on your negotiated contract terms.
A license key file is meant to help you stay in compliance with your contract, however, it is your responsibility to
not exceed the terms of your purchase.
An Evaluation license allows all features to run but for a limited time, e.g. 30 days.
An Evaluation license can be used on any, and any number of machines, also regardless of O/S. It does report the
entity name of the evaluation license holder.
License keys include a Maintenance and Support (M&S) expiry date. The software will continue to run, without
spoilers, after that expiry date. What will result in an 'invalid license key' status, and consequent spoilers, is the
attempt to upgrade your version of DocOrigin to one that was released after your M&S expired.
If the system that is being upgraded allows internet access to docorigindb.com, and the M&S fees have been
paid, then during the installation of the new software your license key file will be updated automatically to
reflect the latest M&S expiry date (and possibly new feature flags). If internet access is not permitted, contact
your distributor before upgrading to a new version. [And for heaven's sake, keep a backup of your old
installation file!]

Merge Version
To display the current version number of Merge, use Windows Explorer to locate Merge.exe and double-
click on it. Typically Merge will be in the C:\DocOrigin\DO\Bin folder on a Windows computer. For folks
who use the command line, simply run Merge with no parameters at all. The current information on Page
and Document counts will also be displayed. You will see a display similar to:

In script within a form, you can get the Merge version via _os.getMergeVersion().

 DocOrigin Merge version 3.1.002.11
 (c) Copyright 2009-2020 - Eclipse Corporation WSL Inc.
 Hostname: AcmeServ

 This software is licensed for the exclusive use of "Acme Corp.".
 License key file used: 'C:\DocOrigin\DO\Bin\Acme_EVAL.key'

 Your license expires in 56 days.

 Page Count: 135
 Document Count: 100
 Job Count: 20

http://docorigindb.com

Merge | Merge Licensing Info

page 229

License Key Renewal
License Key renewal is done automatically during installation, assuming the system permits internet access
to port 80 at docorigindb.com.

An explicit renewal request can be made at any time using:

 DO Merge -renew

You might wish to do that before you install so as to inspect the .key license key file for its M&S expiry date
to see if a recent payment of M&S fees has been recorded and the M&S expiry date updated accordingly.

The .key file includes the expiry date in encrypted form but also includes a comment line of the form:
(Changing the comment line has no effect.)

 * This license expires on yyyy-mm-dd

See Also

 License Keys

http://docorigindb.com

Merge | Merge Output

page 230

Merge Output
There are a number of optional ways to control what DocOrigin Merge can generate as output, where it
writes it, and in what format. These are summarized here.

The Basics
Merge output is controlled by DocOrigin Configuration Files (often called .prt files or config files). When
you run Merge you must supply a configuration file that governs what fonts are available, when they must
be downloaded or embedded (as opposed to assumed to be available), what output language to use (PCL,
Postscript, PDF, HTML etc.), and a whole variety of options for these output languages.

Along with the .prt file, you should specify where the output is to be sent. This can be a local printer, a file,
a named pipe, or even a program or command to move the output to a designated repository.

When your Merge run contains multiple documents (as in a whole series of invoices), you can also specify
whether all those resulting documents are written as individual files or printer jobs, or combined using the
-combinedocuments feature into a single document. This can be of particular value when generating PDF
files, where you might want a single large PDF that contains all (say) invoices.

Finally, you can if you wish, create more than one output stream from the same Merge run. For instance,
from a batch of documents create individual PDF files that are each emailed to the client as well as a single
combined PDF that you deposit in an archival repository.

Merge | Merge Output

page 231

Downloaded / Resident Fonts

TrueType Fonts
Typically the fonts that are used are TrueType (TTF) fonts, or they are fonts that are already pre-loaded/pre-
installed in the printer or the viewer technology. [PDF has many fonts that are intrinsically known by any
PDF viewing technology.] When TTFs are used, Merge knows how to peer into them to discover character
metrics and it knows how to subset the font so that only the characters that are used need to be defined in
the output stream. If you have or can obtain a TTF version of a font, that is the best course of action to
follow.

To indicate that you wish to use a certain typeface in your form designs, use the ConfigEditor tool to simply
put a checkmark beside the typefaces of interest. ConfigEditor automatically finds the TTF files in
your .prt's specified TTFPath.

Resident Fonts
Some (most?) printers have intrinsic knowledge of a certain set of fonts. DocOrigin includes font metrics
files for the most popular of these fonts. You can see those in the .../DO/Config folder as .mtx (metrics)
files. Even in those cases, the .mtx files most often contain a reference to a .ttf file, which will be used if it
can be found on the system (in the nominated TTFPath). On a Windows-based system, often the
referenced .ttf file will be found and used. Otherwise, the character metrics defined in the .mtx file will be
used. If your printer has a resident font for which no .mtx file is available, you can create your own, since
the .mtx files are openly readable text.

To indicate that you have resident fonts in your printer, edit the relevant printer configuration file (.prt)
with a text editor and enter in lines such as:

<ResidentFont Typeface="Courier New" Bold="*" Italic="*" ID="4099"/>

You can find examples of that in each shipped Default-xxx.prt file. Add to the list of resident fonts that are
known to be in your printer. There are comments in the .prt to help you.

These "resident" font notes also apply to fonts which, through your own procedures, are always
permanently downloaded into the printer.

Note that you should not select a huge set of fonts, not for technical reasons, but rather pick a
subset to standardize on so that your site's forms have a common look and "branding".

Warning: Coming up with all the required information, especially character widths, may be
difficult. If possible, try to find a ttf version of the font and use that directly, or try to find a
conversion tool to convert whatever format font you have to a ttf format. Even if you have the ttf
only temporarily, you can use that to create an mtx file. See TTFUtil in the .../DO/Bin folder. Run it
with no parameters to get the 'usage' instructions.

Merge | Merge Output

page 232

Soft Fonts (PCL only)
If you have non-TTF fonts which you want to download into the output stream, then first, do consider
finding a TTF alternative. However, if you must use these non-TTF (bitmap) fonts, then it is possible to do
that. You must have a font definition file; typically a .SFP, or .SFL file, though other extensions are used as
well. To make Merge aware of these fonts you would edit the relevant printer configuration (.prt) file with a
text editor.

After the "<Printer>" tag, you should enter line(s) such as:

<DownloadFont_MICR300>MICR300.SFP</DownloadFont_MICR300>

where MICR300 is an example of the typeface being downloaded. The "MICR300.SFP" is the example of the
file name that houses the soft font definition.

In many cases, the font may have bold, italic, and bold-italic variations. For this non-ttf technology, you will
need to specify the soft font file to be used for each variation. E.g. in the style of:

<DownloadFont_typeface>xxxxxxxr.SFP</DownloadFont_typeface>
<DownloadFont_typeface_B>xxxxxxxb.SFP</DownloadFont_typeface_B>
<DownloadFont_typeface_I>xxxxxxxi.SFP</DownloadFont_typeface_I>
<DownloadFont_typeface_BI>xxxxxxbi.SFP</DownloadFont_typeface_BI>

Often there is no direct correlation between the typeface name and the soft font definition file name.
Hence the example shows xxxxxx rather than typeface. The important point is the <nothing>, _B, _I, _BI
tag suffixes. If your form designers will be clicking on the Bold and or Italic buttons for text rendered in this
typeface, you will need those entries.

Those entries tell Merge where to get the soft font bits to copy to the output stream. It does that only if
that particular typeface variation is actually used in the document.

You must also tell Merge (and Design) that the given soft font is available to use. You would do that by text
editing the relevant .prt file and adding line(s) such as:

There are lots of <Font... entries present in any .prt so as to guide you as to placement.

You should notice the inference that you also need a font metrics (.mtx) file. As the downloaded font is not
a .ttf file, you must supply the font metrics, just as was necessary for resident fonts.

A note about the .mtx files for dynamically downloaded soft fonts... Looking at the shipped arial.mtx file as
an example, you will see that it starts with:

<font sTypeface="Arial" sPostscriptName="ArialMT" iBold="0" iItalic="0" iTTCNum="0" TTF="
arial.ttf"/>

Merge | Merge Output

page 233

For dynamically downloaded soft fonts you must not supply the TTF= attribute. Otherwise, it would use
that TTF file instead of your downloadable soft font. You also may as well leave off the iTTCNum= attribute.
It will be useless.

Do specify the sTypeface= attribute. Also, note that many .mtx files could specify the same typeface
name. This would certainly be the case for metrics for the regular, bold, italic, and bold-italic variations of a
given typeface. Do not call one ABCBold and another ABCItalic, otherwise, both of those names will show
up, confusingly, in the Design typeface dropdown. They should both be ABC and the form designer should
select the B or I button(s) as per normal.

Finally, if you wish, you could consolidate several .mtx files into one larger file simply by concatenating
multiple <FontMetrics>...</FontMetrics> sections into a single file. To keep it a well-formed XML file you
could surround the whole set with <root>...</root>. Your .prt file would then need to reference only that
one .mtx file in a line rather than the multiple entries that would have been required
otherwise.

MTX File Units
Font metrics (.mtx) files are pretty much internal -- rarely being looked at by anyone. However, if you have
resident or dynamically downloaded non-TTF fonts, then their contents can be of interest. Naturally, a
"metrics" file contains numbers for widths etc. In the DocOrigin world, the internal unit is a millionth of an
inch. Of particular importance here is that in a .mtx file the widths given are for a hypothetical 1-point font.
Naturally Merge does the applicable scaling. Note also that as these are in real-world length units, they are
not affected by the DPI of the printer. Merge works it all out.

In JetForm Central .L4 files the character width (CWidth) entries varied by whatever point size the .L4 file
was for, and the units (even though they had decimals) were in 'dots' with a presumed printer resolution of
300 dpi. Converting a .L4 CWidth to DocOrigin .mtx units requires that you divide by the .L4's point size and
multiply by (1000000/300).

Merge | Merge Output

page 234

•
•
•
•

Output Filenames / Options
Output files are typically specified as part of the Merge command line options using the -output option.
The name can have various embedded substitution strings to allow the name to be programmatically
modified when it is opened.

Output files can have 4 types of substitution:

Printer table substitutions (as of 3.1.002.08). See below for details.
$X command substitutions - see $X String Substitutions
[fieldname] which is replaced by the form field's current value.
%x - one of several automatic field values, typically date and time values. See File Naming Conventions for
details.

Output value may be a logical printer (or file) name. Those values are mapped to real paths via key-value
file called Default-PrinterTable.ini. Override this file with your own mappings. The logical printer name can
not have any of the following characters: :, /, \, or .

Some examples:

-output $U/Output/Myfile.pdf
 ... output in C:/DocOrigin/User/Output.Myfile.pdf or equivalent

-output $U/Output/[Account]_%Y-%M-%d.pdf
 ... substitute value of field "Account" and current date
 ... C:/DocOrigin/User/Output/12345_2015-03-20.pdf

-output PrinterInRoom404

It is important to note that the replacement of these various substitution strings happens at the
time the file is opened. This is when the actual "Print" phase of Merge processing begins,
immediately after the 'Start Next Print Driver' script event. This can be important when using Field
substitution which can be modified by script.

Merge | Merge Output

page 235

Scripted Output Destinations
You can use a script to set the output file as well. This script can be in any of the Merge events up to and
including the "Start Next Print Driver" event.

You can access the current setting of the output string using the _printer.getOutputFile() call. If you are
using multiple outputs you'll need to qualify that call with the printer name such as
_printer.getOutputFile("PDF2").

To set a new output destination, use _printer.setOutputFile("newname") of the qualified equivalent
_printer.setOutputFile("newname", "PDF2"). The new output name can have embedded $X variables,
[fieldname] strings, and %x substitution as well, just as the basic command line -output can have. These
substitutions happen just as the actual printing process begins.

If you are using the CombineDocuments option that combines all documents within a multi-document
Merge run into a single output file, You can also use the _printer.setOutputFile() routine to change the
output destination part way through that run.

See the _printer section for information on other printer-related scripting.

Merge | Merge Output

page 236

Multiple Output Streams
With DocOrigin it is possible to have a single Merge run (perhaps of several documents) send output to
more than one output destination. This might be an application where, for instance, a set of customer
statements are generated as PDF and are emailed to the client. At the same time, a single combined pdf is
created that will be stored as an archival copy. Or one might have an application that creates PDF
statements and emails them to customers who have signed up for electronic delivery and sends the others
to a PCL printer for mailing.

The Multiple Outputs section describes this feature in detail.

Merge | Merge Output

page 237

Output to Another Program
(As of 3.0.004.05)

If the output destination is preceded by "run::", Merge will treat the rest of the output string as a
command to be executed once the entire output file has been created. So for example:

-output "run:: curl -T %t -u user:password ftp://mywebsite.com/newfile.pdf"

The above output definition would invoke the curl.exe program to send the output file (the %t value) via
FTP to a website. This could just as easily be the name of an archive program or any other program or
command script on your computer. All the normal $X, [fieldname], and %x substitutions are available if
required.

The program that is called should exit with a return code of 0 if it succeeded. All other return values will be
construed as a failure and result in an error written to the Merge logfile.

You could accomplish the same thing by directing the output to a temporary file, then using a script in the
End-of-Document or End-of-Job event to invoke _run, passing it the needed parameters. Using run:: as
the output "file name" is seen as a simpler, more declarative way to accomplish those operations. You can
supply any needed credentials for access to other systems and effect dynamic network connections if that
is what your output distribution needs call for.

See Also

Multiple Outputs File Naming Conventions _printer

Merge | Merge Filters

page 238

•

•

•

Merge Filters
Merge is necessarily given data to work with — via its -data option.

However, that data as originally provided may not be completely suitable for Merge to use with the given
form. In fact, it might not even be in XML format.

Merge has the concept of data filters. You can specify a data filter, or a chain of them, to massage the
original data stream into something that is more suited to later processing.

The Merge -filter command line option is used to indicate the need to convert incoming data to a
Merge-compatible XML data stream. The -filter option specifies a Filter Program — either an executable
program or a JavaScript script. DocOrigin includes some standard filters, and is architected so that you may
provide additional filters. The filter program is passed the input data file and must return a correctly
formatted XML data file. This returned XML file is what is then processed by Merge.

Other sections describe some pre-built filter programs that are part of the DocOrigin installation and later
describe how to write and test a JavaScript filter. You can write your own executable filters, if you like, too.

Filter options
When using the -filter option, three other options may also be specified on the Merge command line:

-filterParm — allows additional options to be passed to the filter program.

With the advent of multiple filters in one Merge run, these parameters get passed to each filter. No
problem, as filters ignore parameters they don't understand. This option is deprecated in favour of
providing the options as defined in -filter.

-filterOutput — will create a copy of the output XML data in a location of your choosing. That is if you want
to refer to it later or are debugging. With the advent of muliple filters in one Merge run, by end of job, it will be
the last filter's output that will be in this -filterOutput specified location.
-trace tracefile — writes additional debug information to the file.

All pre-built converters use the standard DocOrigin command line syntax — see Command Line Processing.

Command options are typically stored in a parameter file which is passed to Merge.

All standard DocOrigin command options also are available — see Common Command Line Options.

See also

-filter

Standalone usage
Note that the filter programs can also be run standalone, independent of Merge. This can be useful for
testing or in Job Processing scripts where perhaps Merge is not even involved or the structure of your
script leads you to want to do this filtering independently of Merge.

Merge | Merge Filters

page 239

•
•
•
•
•
•

When used in a standalone fashion the filter programs must be passed the -in and -out parameters
explicitly. In a Merge filter context those parameters are supplied automatically.

Executable (non-script) filters
Convert JetForm data to XML
Older deprecated conversion
Sort XML data on multiple keys
IBM ICU codepage conversion filter
XML Include filters
Filters that you write

https://docs.docorigin.com/reference-manual/merge/xml-data-files#:~:text=no%20match-,XML%20Includes,-One%20XML%20data

Merge | Merge Filters

page 240

•

•

•

•

•

•

ConvertDatToXml Filter
This is the preferred filter to use to convert Field Nominated Format (FNF) into XML. It is a binary
executable, not a script, so it performs faster. Unlike predecessors, it handles multiple documents in one
data file. It uses the target form name as input as well and so does a much better job of matching up the
case of names used in the FNF file with those used in the form. Internally, it actually creates a document
DOM and then dumps that out as an XML file. The result is that the XML file is perfectly tailored for
DocOrigin use with the form being used.

Additional parameters:
–in (required)

This is used to provide the name of the input .DAT file. This argument is common to all DocOrigin filter
processes. Note that it is supplied automatically when this app is used as a Merge filter. However, if
this app is run standalone, the -in parameter must be specified.

–out (required)

This is used to provide the name of the output XML file. This argument is common to all DocOrigin
filter processes. Note that it is supplied automatically when this app is used as a Merge filter.
However, if this app is run standalone, the -out parameter must be specified.

–form (required)

Used to provide the name of the DocOrigin form file(s) to be used for field name searching. If more
than one form is required, the names of the forms should be separated with –;— as they are when
invoking the ‘DocOriginCombineForms’ executable.

–formlist (optional)

Used to provide the name of a file into which is written the list of form files referenced in ^form lines
within the .DAT file. This file is typically a temporary file whose content is used to re-establish the list
of forms for Merge to use when it–s actually merging the resulting XML and the forms.
Usage of this option is a little tricky. Please refer to the command line option -useFilterFormList

-oneChild paneName (optional)

This is used, somewhat rarely, as a means to put into effect the notion of letting the data stream
control the order of the panes rather than having the form design specify the order of the panes. See
the "Data Order" discussion at the end of this list of options.

–prefix (optional)

This is used to specify a character other than ^ as the prefix for hat command lines in the .DAT file. At
JetForm, the character was always called 'hat' and not 'caret'.

Conversion of .dat files is very common. To that end, if the data file has a .dat, or a .fnf extension
then, if no filters are specified, this ConvertDatToXml filter will be applied automatically.

Merge | Merge Filters

page 241

•

•

•

•

–newline (optional)

(as of 3.1.001.13)

This is used to specify a different alternate newline character. By default, ~ is the alternate newline
character, but you can change that to some other character. If you use -newline but do not provide a
character to use, then the alternate newline character processing will be turned off, i.e. it will not look
for ~.

–rename (optional)

Includes two strings separated by : used to populate a table of rename pairs.

Example: -rename InvoiceNo:InvoiceNumber - this indicates to ConvertDatToXml that it is to replace
InvoiceNo with InvoiceNumber wherever it encounters it used as a field name in a ^field or ^global
line in the .DAT file.

Note that there can be any number of –rename arguments on the command line. Well, more likely in
a .prm file than right on the keyed in command line.

–split splitText (optional)

This provides a string that is to be processed as a document separator whenever it is found in
the .DAT file.

This argument is optional. However, if you do not provide any –split argument the entire .DAT file
will generate a single document in the XML file. That might be what the user wants but more likely it is
not.

A popular string to provide is: ^page 1. That is often used in .DAT files to indicate the end of one and
the beginning of another document's data.

Example: -split "^field AccountNumber" indicates that whenever a line in the .DAT file that
contains only the string ^field AccountNumber is encountered a new document should be started in
the output XML file. When the string to search for includes spaces, it's necessary to put quotes around
the string so that command processing will not treat it as multiple separate command line arguments.

ConvertDatToXml always removes leading and trailing blanks and line-ending characters from the line
before it checks for a match.

The splitText string may contain the special wildcard characters * and ?. In that case, the
comparison treats those characters in the same way as Unix and DOS do for file name searching. i.e. *
matches any number of characters (including no characters) and ? matches any single character. If you
are actually searching for a string that includes a ? or a * you need to precede that character with a
backslash in the string. If you are searching for a backslash you need to include two backslashes
together in your string.

The string comparison, when checking the line from the .DAT file, is case-insensitive.

Note that there can be any number of –split arguments on the command line.

–substitute "oldCommandText:newCommandText" (optional)
(As of 3.0.003.11)

Merge | Merge Filters

page 242

•
•

•

•

•
•
•
•

•

If a -substitute specification is given, a command line of the data file can be changed before it is
further processed. An example of usage would be:

-substitute "^global JF123:^field JF123"

Such a change would mean that the field would be treated as a field and not just the resetting of the
current value of a global. Thus it could cause a new instance of a pane to be emitted, whereas a mere
change in a global value would never do that. Another example would be:

-substitute "^page 2:^subform TsAndCs"

This can make it easier to correlate old .dat file page numbers with pane names.
The oldCommandText is case-insensitive (since JetForm data files are case-insensitive). It need not be the entire
command line; using just a substring of it is permitted. No wildcard characters are supported.

Note that there can be any number of –substitute arguments on the command line. If there are more
than one -substitute specification, all instances of the first substitution will be done on the .dat
command line being processed before the next -substitute specification is done.
–symbolset codepage (optional)

If your input data is in some codepage other than utf-8 then you should cause it to be converted to
utf-8 by indicating which codepage it is in. To see a list of supported codepages run uconv -l in the DO/
Bin folder of your installation. See also Codepage Handling.

–allowRTF Y|N (optional)

Enable or disable conversion of fields' data to rtf globally for the ConvertDatToXml run. By default, this
conversion is enabled. Note that it's possible to handle some specific fields that are expected to have
rtf content later in Merge using _inlineToRtf script function which converts Central inline text
commands to rtf.

–trim (optional)

This indicates whether to trim trailing blanks from the value string before storing it for a field. The
valid setting are: left, start, right, end, both and none.

left and start indicate to trim blanks on only the left end of the string.
right and end indicate to trim blanks on only the right end of the string.
both indicate to trim blanks on the left and the right end of the string
none indicates to do no trimming of blanks. none is the default setting for –trim.

–verbose 100 (optional)

If this is provided to the filter, as opposed to Merge itself, then the filter will report which fields were
dropped, because of no name match, as it does the conversion.

Data Order
In DocOrigin the idea is that the data stream provides data and the form design provides the layout,
including the order of the dynamically instantiated panes. Adobe® (JetForm) Central users are used to the
data stream taking full control. Often those data streams were constructed to emit subform X, then

Merge | Merge Filters

page 243

subform Y, then subform A, etc. In any order. The form design had no say whatever. ConvertDatToXml, via
its -oneChild option, provides a means to cope with such data streams.

The Central form designs essentially had a sea of unordered subforms. The data stream could reference
any of those subforms in any order. Essentially the data stream "drew" the document by continually saying
what should come out next. To support this concept in DocOrigin you take all of those unordered
subforms, now converted to panes, and place them all inside a parent of a chosen name. (It must be
named). For description purposes let's say the chosen name of the parent pane was DataOrder -- but you
can pick any name.

So you now have a parent pane (DataOrder) and a whole bunch of loose, unordered, child panes. The
parent pane must be marked as Allow Multiple, and probably Allow Split. The child panes must always
be marked as not Mandatory. They may or may not be marked as Allow Split. So the structure is like this:

 DataOrder (Allow Multiple)
 Pane1 (all of these are marked optional)
 Pane5
 Pane3
 PaneX
 PaneQ
 ...

When you run ConvertDatToXml you would use:

-filter 'ConvertDatToXml -oneChild DataOrder'

That will very much affect the structure of the XML file that ConvertDatToXml produces. It will never allow
the chosen pane (DataOrder in our example) to have more than one child. So, if the data stream had
subforms in the order PaneX, Pane5, Pane3, what would come out in the XML is a structure as follows:

<DataOrder>
 <PaneX> ... fields for this pane</PaneX>
</DataOrder>
<DataOrder>
 <Pane5> ... fields for this pane</Pane5>
</DataOrder>
<DataOrder>
 <Pane3> ... fields for this pane</Pane3>
</DataOrder>
 ...

That will cause Merge to create new instances of parent pane DataOrder as needed and each time create
an instance of a single child pane. In that way, the document output order is not controlled by the form
design, but by the data stream.

Of course, we think that the form design should control the layout and output order and the data
should be mere data, however, you must deal with the data you are given.

Merge | Merge Filters

page 244

•

•

•

•

ConvertTxtToXml Filter
(as of version 3.1.002.06)

This is a filter to convert a flat text file (typically a report) to XML. To do this, you must design a .xfilter file
using the DocOrigin FilterEditor task. This xfilter is applied to the incoming text file to convert it to an XML
file. Internally this program uses the Merge task to process the conversion.

Additional parameters:
–in (required)

This is used to provide the name of the input .txt file. This argument is common to all DocOrigin filter
processes. Note that it is supplied automatically when this app is used as a Merge filter. However, if
this app is run standalone, the -in parameter must be specified.

–out (required)

This is used to provide the name of the output XML file. This argument is common to all DocOrigin
filter processes. Note that it is supplied automatically when this app is used as a Merge filter.
However, if this app is run standalone, the -out parameter must be specified.

–xfilter (required)

Used to describe how to find and extract the actual data from the text file. The .xfilter file is created
using the DocOrigin FilterEditor program.

–logfile (optional)

A standard DocOrigin logfile. If not supplied, a default logfile name is used.

Merge | Merge Filters

page 245

•
•
•
•

•

•

Dat2XML Filter
Dat2XML is an executable (not JavaScript) filter which will convert basic Field Nominated Format (FNF) into
XML.

NOTE: Dat2Xml is DEPRECATED. It is superseded by the far more functional ConvertDatToXml executable.

Dat2Xml presumes that the input data file is for only one document.

Dat2XML handles the following FNF commands:

^Field fieldname - the name of a field on the form.
^Global fieldname - interpreted as a ^Field. Set global flags in DocOrigin Design to make any field global.
^Graph fieldname Dat2XML makes the filename the data for the current field.
^Form formname - adds the form to a list of DocOrigin forms that will be combined into a single form within
Merge. Equivalent to -form "formname1;formname2; ..." Merge syntax.

Additional parameters:
-rename from:to — This directs Dat2XML to change the field name called 'from' to a new name called 'to'. This
allows data to be renamed to match fields in an existing form. You may include multiple -rename commands in
the command file.
-rtrim Y/N — -rtrim Y tells Dat2XML to remove all trailing blanks from the end of the data.

Merge | Merge Filters

page 246

DocumentSort
This filter allows you to sort your input XML file based on one or more keys. It is quite a fast sort at that!

If running the filter standalone it takes the usual -in and -out parameters. When run as a filter via
Merge, those parameters are provided automatically. The input will be either the -data file or the output
of the previous filter. The output file will be passed on to the next filter, or if none, to Merge.

-keyName
Of course, it needs to be told which XML fields (tag names) to sort on. There may be one or more. This is
easily done with the -keyName=xmlTagName parameter.

Sort key qualifiers
There are a number of qualifiers that can be applied to each sort key. They must follow the sort key to
which they apply. These qualifiers are:

Qualifier Meaning

-descending Sort this key in descending order

-caseSensitive Treat keys with the different case as different

-numeric Treat this key as a numeric. E.g. 2 should come after 10.

-rightJustify For sort purposes, pad this key on the left with blanks until it is
the width of the maximum width key for this sort key

These are all boolean settings so, if you are keen on such things, you can add an =Y, =N, =T, =F, =0 or =1
to each of these. The default is =Y. So the setting itself says that you want that action to happen. And the
absence of the setting means that you don't want that to happen.

Filter syntax
Do recall that as a Merge filter it is the entire set of parameters for a filter that is simply one large -filter
parameter to Merge. So if you are running this as a Merge filter, as opposed to standalone, you would say,
preferably in a .prm file, not keyed in by hand on the command line:

-filter "DocumentSort -keyName=SortTagA -numeric -keyName=SortTag2 -descending"

Notice that the whole set of parameters is within quotes.

-numeric and -rightJustify were introduced in 3.0.002.03.

Merge | Merge Filters

page 247

A powerful usage
By doing a fast sort on, say, Branch, or Region, it is very easy to get all the documents out for a Branch|
Region together. If you are producing PDF output, using PDFCombineDocuments Yes, you can easily put all
of the documents for a Branch|Region into one PDF for easy dissemination.

See Also

Multiple Outputs Printer options

Merge | Merge Filters

page 248

•
•
•
•
•

JavaScript Filters
Script-based JetForm data to XML You may use as is, or copy and edit
Script based comma separated to XML Use as is, or copy and edit.
xfilter scripts via FilterEditor See Filter Editor.
XMLAttrs Filter Expose XML attributes as tagged data
Any filters that you write – they are easy.

Writing filter scripts
Using the JavaScript language you can code your own custom filter to convert data into XML. The -filter
command must specify a JavaScript file (typically with a .wjs file extension). You must specify the script file
(.wjs) using the -filter command as in:

... -filter "C:/DocOrigin/User/Scripts/MyFilter.wjs ..."

Script Filter Options
When Merge runs a script-based filter it supplies a -in option and a -out option. If multiple filters have been
defined, Merge takes care of passing the 'out' of one filter to the 'in' of the next filter. The first filter
normally gets the data file as its 'in'. Even there you can't be sure that Merge didn't have to do some of its
own earlier processing which resulted in a temp file. So use the -in option as the safer bet.

When run as a filter, the -in and -out options are NOT found in _job.command.in and _job.command.out.
Instead, they are found in _job.filter.in and _job.filter.out.

As it happens, one doesn't usually make use of the -out option because you are more likely to use the _xml
object that is also provided to a filter when it is run by Merge. The _xml object makes it easier for you to
generate XML, and in general, that is the target that all filters are aiming for.

Standalone usage of script filters
It's great that Merge can run filters. It is also useful to be able to run them independently of Merge. Some
effort is required to support both usages as a Merge filter and usage as a standalone script. The following
script snippet will likely show you the score.

var dataFile;
if (typeof _job.filter != "undefined")
 dataFile = _job.filter.in; // Presume use as a Merge filter
if (typeof dataFile == "undefined")
 dataFile = _job.command.in; // Fallback for standalone usage
if (typeof dataFile == "undefined")
 dataFile = _job.datafile; // Well, lazy standalone usage

Similarly, one may wish to know the -out option that is in force, if for no other reason than to use it in some
log messages that you may issue.

https://docs.docorigin.com/reference-manual/merge/xml-data-files#:~:text=no%20match-,XML%20Includes,-One%20XML%20data

Merge | Merge Filters

page 249

var outFile;
if (typeof _job.filter != "undefined")
 outFile = _job.filter.out; // Presume use as a Merge filter
if (typeof outFile == "undefined")
 outFile = _job.command.out; // Fallback for standalone usage
if (typeof _xml != "undefined")
 outFile = _xml.getFileName(); // A defined _xml is definite 'source of
truth'.
if (typeof outFile == "undefined")
 outFile = _file.getFileNamePart(dataFile, "NoExt") + ".xml"; // A possible default
(you choose)
Within a filter there is a pr

Within a filter, there is a pre-defined object called _xml which is used to specify the xml output of the filter.
See the XmlFile Class for details on the generation of xml output. However, for standalone usage, you will
need to create that _xml object yourself. As in...

if (typeof _xml == "undefined")
 _xml = new XmlFile(outFile, true); // see above for outFile computation

With those code snippets in place you can happily run / test your filter in standalone mode:

RunScript -script MyFilter.wjs -in

Processing within a script
All of the standard DocOrigin scripting extensions listed in the Scripting section are available when running
a Merge filter script.

A classic filter processing loop would be:

var fp =_file.fopen(dataFile, "r");
while (true) {
 line = fp.fgets();
 if (line == null) break;
 ... work out a name / value pair
 _xml[name] = value;
}
fp.fclose();
_xml.close();

A script Filter can also reset the name of the form that is being processed. Use the

_setForm("newFormName");

script function to reset the form to be used.

The script's return value
1 (true) means success, 0 (false) is failure

Merge | Merge Filters

page 250

The Filter script must indicate whether the conversion was successful or not by returning true if it
succeeded or false if the file cannot be converted. Use the JavaScript return true; or return false;
statement to return this value.

In most places a return 0; is good, BUT NOT HERE. For script-based filters, you must return 1; or
return true; to indicate success.

Merge | Merge Filters

page 251

DatToXml Filter (Script-based)
For complete control over the data conversion process, there is no better method than using a script-based
solution. Fortunately, you do not need to start from scratch. A DatToXml.wjs is included with DocOrigin. It
provides a strong basis for converting .DAT to .XML. In fact, it can often be used as is.

However, if that is the case then please use ConvertDatToXml instead.

But you may want to code in some special processing for your situation. In that case, take a copy of the
supplied DatToXml.wjs and modify it, likely only slightly, to get the result you want. There is additional
documentation in the comments at the bottom of the supplied script.

BTW, if you believe the processing option you need is or would be common to your JetForm Central
brethren, please do let us know so we can consider it as an additional feature of the ConvertDatToXml
default filter.

Merge | Merge Filters

page 252

CsvToXml Filter (Script-based)
Comma separated values (or tab or space or whatever delimiter) to .XML. The CsvToXml.wjs script is
included in the installation. It has a whole slew of parameters which are described in comments at the
bottom of the file.

Often this script can be used as is. In fact if a data file has a .csv extension and no filter is specified, then
this filter will be applied automatically.

However, if you have some special processing needs, it's probably best to take a copy of this script and
make some code edits.

Merge | Merge Filters

page 253

XMLAttrs Filter (script-based)

XML Attribute Processing
DocOrigin does not even consider attributes in the XML it is given as data. That doesn't seem to be a
hardship to anyone producing the XML for DocOrigin consumption. The idea is always to keep it simple
and ignoring attributes does help do that. However, sometimes one is faced with XML that is already being
produced and that does have attributes. What to do then?

Well, one could drag out your XSLT knowledge and several Aspirin and go for it. Yeah, right!

DocOrigin supports the concept of filters. You can specify a -filter filtername option on the Merge
command line and Merge will run the filter on the fly, converting your data stream in whatever way your
filter does, before handing it off for form + data merging. Very handy. Those filters can be written in
whatever language and supplied as an executable or written in DocOrigin JavaScript (.wjs) and executed
that way.

You are not on your own, in fact it is my fond hope that folks will begin to share the filters that they write.
Eclipse Corporation is supplying an XmlAttrs.wjs filter that works for us. It's a simple concept. As it filters
the input XML file full of attributes, it outputs a new XML file in which every attribute has been turned into a
child element of the element that had attributes. For example:

<Customer name="Acme Corp">
 …

becomes

<Customer>
 <name>Acme Corp</name>
 …

Hence, all of the attributes are now exposed to DocOrigin processing.

All you have to do is specify -filter $S/XmlAttrs.wjs as a command line option to Merge (probably
buried, in the usual way, in the .prm file for the job). That's it. Now your form has access to those
attributes. [$S is defined in Default-Paths.prm as install dir/Merge/Scripts.]

At the moment the script does not prettily indent the output XML. Want to update it and share?

Interracial marriage is great, but mixed content in XML is a dumb idea. This script will throw a hissy fit, I
imagine, if you supply XML that is not well-formed, or XML that has mixed content -- that is where an
element has both child elements and text content. Don't do that!

So what happens when you have:

<Customer sla="premium">Acme Corp</Customer>

Won't that create the abhorred 'mixed content'? As in:

Merge | Merge Filters

page 254

<Customer>
 <sla>premium</sla>
 Acme Corp <!-- Aack, mixed content -->
</Customer>

That would be unacceptable (imo). We have to invent a tag to enclose Acme Corp. Choices abound. For
better or worse (Leave a Comment) I have chosen to enclose it with the original tag, so…

<Customer>
 <sla>premium</sla>
 <Customer>Acme Corp</Customer>
</Customer>

And so, yes, you do end up with Customer.Customer. And your choice would be …?
Well, you have your choice. You can choose to supply a -contentTag=aTag command line option. For
example, you might choose -contentTag=_content_. As another trick or treat we consider the ! character
to be special. It is interpreted to mean 'whatever' the original element name was. So -contentTag=_!
would mean _Customer in the examples used above. The default -contentTag is !.

BTW, the script recognizes and faithfully copies: XML comments, XML processing instructions, and CDATA.

Let one of your attributes be enjoyment (and another be content).

Merge | Merge Filters

page 255

Codepage Handling
Filtering is great but it is a darn sight more effective if you are working in the right character set encoding.

The right character set encoding is utf-8.

If your input data is in utf-8, you're golden, you can skip this topic entirely. If not, then your task is how to
get your input data into utf-8, so it can be filtered and processed properly.

If you are running Merge then the simple answer is to use the -symbolSet option. When that is present,
Merge will automatically use uconv to convert your data from the nominated code page to utf-8. In
essence, it is the first filter run and allows subsequent filters, and Merge itself, to expect utf-8 based input.

uconv can also be run standalone, say in Job Processing scripts if your code structure makes you want to
employ it that way.

uconv
Included with DocOrigin is the IBM ICU internationalization library and tools. It is used throughout
DocOrigin code. The ICU suite is rightfully a highly regarded suite.

In the .../DO/Bin folder you will find uconv.exe, (well no .exe on unix platforms). You can run:

uconv --help

and get blown away by all the options. It is impressive. Thank you IBM.

uconv encodings
For more fun, try:

uconv -l (that's a lower case L)

Reams of codepage identifiers will spew out. I bet your source data file is encoded in one of those
codepages. Once you've located the encoding that applies to your data, you are away to the races.

uconv usage syntax
The standalone usage of uconv is:

uconv -f sourceEncoding -t utf-8 -o outputFile inputFile

Where...

-f stands for from

-t stands for to

-o specifies the output file name

-symbolSet (as of 3.0.002.03)
Before then one would've used uconv ahead of time to convert the data given to Merge. Or if using
the ConverDatToXml filter, used the -symbolSet parameter that it supports (and still supports).

Merge | Merge Filters

page 256

- You need to determine your data file's encoding and use it as the sourceEncoding.

- The target encoding is always utf-8.

- You can nominate any outputFile you like.

- And of course, you need to tell it where your inputFile is.

Try it! Seriously, try it ... standalone. When you can open the result with a tool that handles UTF-8 text, and
you see what you want to see, then you are set -- and not before then. Find the right encoding and try it
out.

as a Filter
uconv can be used directly as a filter with the following construct

$E/uconv -f sourceEncoding -t utf-8 -o %out %in

%in and %out will be automatically supplied by Merge so as to facilitate the chaining of several filters. If
%in is used in the first -filter option it will be replaced with the original data file name. For subsequent
-filter options %in will be replaced by the output file name of the previous filter. %out is supplied as an
automatically generated temporary file name. The %out of the last -filter is what is supplied for Merge
to do the data + form merge operation.

See Also

-symbolSet

Merge | Merge Filters

page 257

Multiple filters per run
A single run of Merge can invoke multiple filters, chained as it were. For example, you might use a .xfilter
(from FilterEditor) to convert a spool file to XML, then use the DocumentSort filter to sort that XML by
whichever keys you like.

Maybe you have custom code already that can be used to convert to .dat format, but then want to re-filter
that to produce XML.

If you are using multiple filters then your Merge command line must be getting rather long. You should be
using .prm parameter files, in which case each new filter can be readably entered on a new line. E.g.
Syntactically

-filter "filter1 -arg11=value11 -arg12=value12 ..."
-filter "filter2 -arg21=value21 -arg22=value22 ..."

within the double quotes, you can use single quotes to deal with spaces in arg names or values.

You will note that each -filter option takes one long'ish quoted string. That is interpreted as a single
argument to Merge, but its parts are treated as individual arguments to the filter in question.

The first "sub-argument" is the name of the filter to use; e.g. ConvertDatToXml, Delim2Xml, myFilter.wjs,
flatToXml.xfilter, myBinaryFilter.exe.

The remaining sub-arguments are whatever that chosen filter needs. For the DocOrigin ones, that will
certainly include a -in and -out pair of parameter names and values. Other options may be desired as
well per the foregoing documentation. Note that -in and -out are supplied automatically by Merge.

You can use a space instead of the = sign. Avoiding the = helps with auto-completion of file names when
typing straight into a command shell.

Merge | Merge External PDFs

page 258

Merge External PDFs
(As of 3.2.001.01)

It is very common for business transaction documents to have not only the usual dynamic header, details,
and trailer information, but also some fixed pages for things like Terms and Conditions and Standard
Policies. As they are quite possibly legally binding documents it is fervently desired that they remain exactly
as authored.

DocOrigin does include tooling to assist in converting PDF files to DocOrigin for design files (.xatw).
However, that usually includes some assistive efforts and can sometimes incur a good deal of conversion
effort. To avoid that DocOrigin supports use of the external PDF pages directly without any conversion.

What do you do to achieve external PDF integration?
You have a normal DocOrigin form design file (.xatw) and an external PDF, let's say a Ts&Cs.pdf. Your task
is to integrate those two source materials into a single output PDF.

To define a place for the external page in the XATW, you would put in what we term a 'placeholder page'.
That is quite likely a blank page (though it need not be).

Your big task is to give that new page a tag:

The tag name is: Placeholder
The tag content is: fully pathed external PDF file name;Pages=n

;Pages=* is the default so you could leave that off. Pages= may be in form of a single page number,
comma-separated list of individual numbers, dash-separated range or a mix of all of them, or an asterisk.

So in our example case, it could be something like: $$F/Ts&Cs.pdf;Pages=3-1,5,1-3

What does it mean? To Merge it means that wherever this placeholder page ends up in the output
document it is to be integrated with the identified page from the identified external PDF. The "integration"
is such that the external page ends up "beneath" and the Merge-generated placeholder page (which might
not be blank) overlays the external page. (E.g. it would be possible to "stamp" a policy number on the
integrated external pages or put your own page numbers over Ts&Cs's ones overlaying them with say
white rectangle and your own page numbers.)

If you are so inclined, you could set these Placeholder tag values dynamically, with script. Indeed you can
insertPage, or clone [placeholder] pages dynamically as well.

For example, Placeholder tag value set dynamically:

There is a limitation: placeholders are disabled for Windows "prt::" scenario. The reason for that is
that for PDF scenario stitching is a post-processing action that can't be done on the original data
which were already sent to the printer. If you want post-processing to happen then print it to the
file and then send that file to the printer.

Merge | Merge External PDFs

page 259

this.setTag("Placeholder", "$U/Stitch/PolicyRider23.pdf");

That is all you need to make it work.

What Merge does
Merge will render the document, including the placeholder pages.

Behind the scenes, it will create a temporary trivial control file which identifies the physical page number of
the placeholder page that Merge generated plus the name of the external PDF that is providing the page to
place underneath the Mergegenerated page. And of course the page number from that external PDF.
Example:

9;"C:/DocOrigin/User/Stitch/CaliforniaRegulations.pdf";1
10;"C:/DocOrigin/User/Stitch/PurchaseTs&Cs.pdf";5

Note that the page numbers are always physical page numbers, not necessarily the same as the page
number printed on the page.

That control file is passed to a supplied but overridable script named Default-DocOriginOverlay.wjs. The
supplied script uses the aforementioned third-party technology to do the PDF file integration such that a
single integrated PDF results.

The DocOriginOverlay.wjs script
The purpose of this script is to integrate traditional Merge and PDF overlaying tool.

The Default version of this script resides as $E/Default-DocOriginOverlay.wjs. You may override it in $O/
DocOriginOverlay.wjs.

The script then goes on to log certain information that may be of interest and it uses the PDFBox facilities
to affect the integration of pages per the control file.

The result is written over top of the original Merge-produced PDF document such that Merge is unaware of
any changes. Merge carries on as it always has in terms of email production, document counting, etc.

Multiple documents per Merge run
The processing handles multiple documents per Merge run. That is, in either case, PDFCombineDocuments =
Yes or No.

You can skip the information below unless you are interested in implementation details or need
some customization.

Warning: The processing entails quite a lot of byte movement and hence dealing with large, multi-
document files, the processing time for the documents may be significantly longer than in
documents that are not using this new feature.

Merge | Merge External PDFs

page 260

PDF/UA Limitation

Pages that are included in the output using the stitching method will not be "Read Aloud" in a PDF
Viewer. Therefore, the stitching feature should not be used for documents that are required to be
PDF/UA compliant.

Merge | Merge Scripting

page 261

1.

2.

3.

4.

5.

1.

2.

3.

4.
5.

Merge Scripting
Several of the DocOrigin components (Merge, Control, QueueProcessor etc.) use a common set of
JavaScript (Mozilla ECMA 262) conventions and extensions. See section Scripting for a complete list of script
functions and DOM access.

Suggested Scripting Guidelines
Whenever possible, scripting should be completed prior to the Pagination event.
For most applications, the Data Merged event is the most suitable for scripting; at this point,
Merge has combined the form and data and performed the word-wrapping, but overflow pages
have not yet been established. If a script changes field data after the Pagination event, the field
will be re-word-wrapped, but the results cannot affect pagination. For a description of the
Merge events, see Merge Events.
To simplify object naming and to avoid complications with dynamic tables and panes, the best
approach is to associate script with the object it is modifying, or with a "parallel" sibling object or a
near parent object.
When using the _document DOM to access form objects, ensure that the referenced objects have
unique names.
When Merge splits a table row or a pane between two pages, not all form objects in the Row or Pane
may appear on both pages. Fields and text below the split will appear on only the second page;
those objects above the split will appear on only the first page. Script on the row-that-references-
these-objects will fail in circumstances where Merge has moved the referenced objects. This issue
may be resolved in DocOrigin Design by associating script with the form objects.
In Design, any table row or pane may be flagged as "Allow Multiple". Within a script, the pane or
table row will be treated as an array object, which must be referenced as Row[2] of Pane1[0]. Even
when only one instance of that table row or pane is created, the reference must use a [0] index.

In DocOrigin Design, use the PDF Preview or Merge Test command on the Tools menu to assist in
debugging scripts in the form. The commands use Merge to combine the form with test data, and to
display the result on-screen or print the output, respectively. For the test data:

Click Auto-generate test data, and click Save Data, to create a compatible starting data file. Then edit
the data file to test specific conditions that might be encountered.
Click Use my test data to provide a test data file created from an application or from an edited auto-
generated file.
Include Common Merge Command Line Options which will cause each Merge test run to create a
trace file -trace tracefile.txt
After each test run, review the content of the trace file using a text editor.
REPEAT: After each test run, review the content of the trace file using a text editor.

https://docs-admin.docorigin.com/display/MER/Common+Merge+Command+Line+Options

Merge | Merge Events

page 262

Merge Events
Merge allows for script at each of several key steps or "events" during the processing of a job. The scripts
are intended to provide processing to enhance the data presentment. Merge triggers the events both at
the job level and during the processing of each document in the data file. For more information, refer to
the The Merge Algorithm.

Event scripts are incorporated into the form. Common routines can be stored in a #include file and used by
more than one form. Design enables you to associate the script with an event at the object, pane or form
level.

Event Description

* Data Filter
Processing

Using the -filter option on the command line it is possible to run JavaScript against the
incoming data stream to transform it into a compatible xml data file for merging. See
the -Filter option in Merge Command Options for syntax.

* Start of Job Called once when Merge starts processing the job but before any documents.

* Start of
each
Document

Called at the start of processing of each set of data.

Data Merged Called once the data and form have been merged together, prior to word-wrapping or
pagination.

Pagination
Completed

Called at the completion of word-wrapping and pagination.
Note that once this event completes, the pagination for the document does not change.
If the content is modified, word-wrapping will be corrected, but no attempt will be made
to ensure the text still fits in the allowable space. If needed, the function
_document.get() can access the page headers and footers that have been inserted by
the pagination process.

Ready to
Print

Called following the final processing of embedded fields and 'page n/m' fields, and once
additional (blank) pages that result from duplexing have been inserted. The document
is ready to begin printing.

NOTE - Several, but not all, Events allow references to the current document's data - for instance by
referencing "this._value" in the script. Access to the current document data is possible on only
the DataMerged, PaginationCompleted, ReadyToPrint, StartNextPrintDriver, and
EndOfDocument events. All others (marked with an * below) will access the Form itself, with
undefined field values.

Merge | Merge Events

page 263

Event Description

Start next
Print Driver

Merge allows multiple print drivers to be called for each document. This event is
triggered prior to each driver being called.

End of
Document

Called once all processing of the document is complete, and page and document counts
have been updated. Merge is ready to flush this document and begin the next.

Start of
Summary

Called when Merge is ready to process a summary page, if required. The script must
have used the _summary script functions to generate the summary data file.

End of Job Called once summary processing is complete.

Finalize Called once all processing is complete, and Merge is ready to exit. Exists only in Form
object.

Merge | Hyperlinks

page 264

Hyperlinks
Merge output to PDF or HTML allow the creation of text hyperlinks when the page is displayed.

Any text Label object that has text that starts with www. or http::/ or https::/ or or mailto: is automatically
converted to a link in the resulting document.

You can also explicitly add a hyperlink address to any Field on the form. Use the script property _hyperlink
to attach a hyperlink to a field. For example:

Field1._hyperlink ="www.docorigin.com";

This would result in a link to www.docorigin.com whenever Field1's contents are clicked on.

You can select part of the text in a text label and use the Format > Hyperlink... menu item to supply the
URL to which that text portion hyperlinks.

http://www.docorigin.com

Merge | Fillable Forms

page 265

Fillable Forms

DocOrigin enables a number of interactive or "fillable" features to be used with HTML forms. These
features allow Merge to generate standard multi-page documents where certain fields are fillable. The
document can also contain many interactive controls such as Pushbuttons, Checkboxes, Radiobuttons, and
Selection/Choicelist controls. Typically, the document has a "submit" button that posts the collected data to
a web server.

Note that DocOrigin does also provide some limited input capability with PDF forms. This includes basic
field data capture as well as checkbox handling. At present PDF fillable forms do not support the dynamic
addition, removal, hiding and showing of panes (whereas HTML fillable forms do support that). Although
the following information is aimed at HTML input forms, the PDF capabilities will be noted when applicable.

This documentation page is about designing a fillable form and then generating that document. There is
another part to fillable forms usage; that is the part that is performed outside of DocOrigin, in the
applicable viewer technology. Further discussion of that area will be found at Fillable HTML Forms and
Fillable PDF Forms. There is most likely yet another part in the fillable forms puzzle, the part that lives on
the web server that is hosting the fillable form. DocOrigin provides some sample, unsupported, PHP
scripts in the .../DO/Samples/Web folder but really the web server portion is left entirely to you.

Single Output File
One of the unique features of DocOrigin Fillable HTML Forms is that all of the components necessary for
the html form are output in a single HTML file. Typically, web pages combine a variety of separate server
files - style sheets, html, jpg files, etc. With DocOrigin Fillable Forms all these pieces are embedded in a
single file. This simplifies deployment and update of the online forms.

Templates
The HTML output structure is defined by a Template file. This is a skeleton .htm file that defines the
structure and base contents of the html file. It has special markers such as HEADER in it that are expanded
by the Merge driver into the actual contents of the document. Use of a Template allows a system integrator
greater control over such things as standard headers or footers, Doctype records etc. A standard (default)
template is provided in the DocOrigin install in the ../DO/Bin folder. A Merge command option of
-template xxx allows that to be overridden with a custom template if you wish.

HTML Script
DocOrigin uses HTML javascript to perform many of the operations. This script gets embedded into the
output html file as part of Merge's processing of the HEADER and FOOTER tags in the template. There is a
standard set of DocOrigin supplied script routines that can be accessed in the form design to perform
actions such as submitting the form data to a server or inserting an option detail pane into the

The Fillable Forms feature is available under only specific licensing arrangements.

Merge | Fillable Forms

page 266

•

•

document. For convenience, these routine names are all prefaced with "DO." - such as DO.submitForm(),
DO.addPane() etc.

You can also create your own script and add it in a number of ways:

By defining functions in the Form object's script Input event.

In Design go to File>FormProperties select the Script button then the Event:Input option. Any script
typed into this section will be inserted into the generated HTML file and can be called by your Input
field event processing.

By creating a custom Template and inserting the script into the template's section.

Script is typically stored as javascript functions that can be called by the onclick, onblur, etc. events by
setting the ViewerAttributes information for a button field. See Pushbutton Fields below.

Input Fields
When Fields have the Input flag set they are considered to be HTML (or PDF) Input controls or buttons.
Input fields then allow the setting of a number of additional settings which control the input process. These
are found by clicking on the Input button at the lower-left of the Field property page.

All other settings are filled and managed like regular Merge data fields. The input fields are also processed
just like all other Merge fields - merging data, affecting layout, etc. prior to being sent to the print driver. In
this respect, Input fields are no different than any other Merge Field. It is only at the final print driver stage
itself that their special status as Input fields are recognized and acted upon. To set the type of Input field
and other options within Design you must click on the Input button under the Field's property tab. Note
that this button is not activated unless the Input checkbox at the top-right has also been checked.

If you select an Input Field (one where you've checked the "Input" checkbox at the top of the Field screen)
and you select the Input button at the bottom left of the Field Properties screen (or select the Format >

Merge | Fillable Forms

page 267

ObjectProperties menu command) you will see the following screen:

The Field Name field at the top if for information only - you can change the field name elsewhere in the
usual manner.

The Input Field Type setting indicates how the input is collected. There are several choices. The list of
choices is dependent on the field's Display As setting on the standard Field screen. For instance,
Signatures and uploaded images are only available if the Field Display As setting is "Image". Radio Buttons
and Checkboxes work similarly.

The settings that are greyed indicate non-applicable settings for the particular Input Field Type you have
selected.

The Viewer Attributes section at the bottom of the screen is pass-through information to the browser and
is typically used to trigger an action such as the HTML onclick event of a Submit button. This is where the
onclick event would be specified for a submit button for instance.

The various options are listed in more detail below:

Merge | Fillable Forms

page 268

Required and Readonly Input
The Required and Readonly settings are available for most input types. When the Readonly option is
checked the user is NOT able to change the data. This is roughly equivalent to having placed a similar
standard non-input field on the form - it is displayed but not changeable. Readonly can be of use when
you want the same DocOrigin form to sometimes collect data from the user and other times echo it back to
them in the same format. Although the data is not changeable by the user, it is passed through to the web
server as it would normally be.

The Required setting indicates that some value must be entered in a field. When a form is about to be
submitted to a web server, any Required fields are highlighted to the user. The form will only post data to
the server when all Required fields have data values. The associated Required Msg field can be used to
override the default message with a custom one. This allows for language localization or expanded
explanatory information.

Input Field Type
This is the type of input experience you want for your user. This can be as simple as a basic Text input or
more elaborate such as Date where the user selects day, month, and year or a Signature input field where
you can sign using a tablet/stylus or mouse.

Fieldtype Checkbox
This creates checkbox input field. DocOrigin checkboxes will always Post either 0 (off) or 1 (on) to the server
- unlike standard html checkboxes which send nothing when the box is not checked. The Design Initial
Value setting, or Merge field data value determines the initial state of the checkbox - a blank, 'n', 'N', or '0'
will default to off (0) anything else defaults to on (1).

The value sent to a web server for a checkbox will always be either 0 for unchecked or 1 for checked.

The checkbox Caption is set on the standard Field Object Properties screen.

Fieldtype Choicelist
The Choicelist input field displays a drop-down list of choices for the user to select from.

The Choice option is used to define the list of choices. Each choice consists of a value to be submitted as
well as the text to be displayed to the user as the description of the choice. For example:

a:"first choice" b:second c:"none of the above"

Would display three choices - "first choice", "second", and "none of the above" to the user. If the second
choice was made, the value "b" would be submitted to the server.

If the value of the Merge field (using either the Design's Initial Value setting, or Merge data, or Merge script)
is one of these submitted values (a, b, c in this case) - that item will be pre-selected when the form is first
displayed.

Merge | Fillable Forms

page 269

Fieldtype Date
An input Date field allows a user to enter a date. The Date is selected from 3 drop-down lists - year, month,
and day of month. The various Date options allow you to control the appearance of these lists.

The Date Order option lets you specify which order the year, month, and day are displayed.

year month day (the default order)
y m d (can be abbreviated)
d m (omit one or more of the choice lists)

The Label option is used to assign a default label or title to each of the dropdown selectors. It should be a
list of titles in the same sequence as the Date Order settings (above). If the entire Label setting is left
blank, default settings we be provided. The labels are displayed as default, non-selectable, grayed text
when the control is first displayed.

The Year Range setting is used to specify what year or years to display in the year choicelist.

1950-2014
2014-1950 (so 2014 is at the top)
2000 (a single fixed year)

The Short Month option uses names such as "Jan" or "Feb" rather than "January" and "February".

The Short Year option displays "08", "09" rather than "2008" and "2009".

The month names are determined based on the Locale setting of the field. Setting Locale to German will
result in German names for the months to be displayed.

If the Merge process results in a recognizably formatted date string (yyyy-mm-dd is a good one), this date is
set as the default value.

The submitted value of a Date field is always in the form of yyyy-mm-dd as in 2014-12-25.

Fieldtype Email Address
This displays an input field that expects an email address to be entered. Validation is browser-dependent.

Fieldtype File
This creates an input field for uploading a file's contents to the server.

Fieldtype Hidden
This creates a "Text" field that is not displayed, but does submit it's contents to the server. Typically used to
pass additional data to the server.

Fieldtype Image
An input Image field is used to upload an image to the server. The image is also displayed or previewed to
the user.

Merge | Fillable Forms

page 270

Fieldtype Password
This creates a "Password" text field - where the text being typed in is obscured by the browser. Otherwise
acts at a Text input field.

Fieldtype Pushbutton or Submit Button
A button is displayed to the user. Typically used to send data to a web server.

The Label option is used to specify the text on the buttons (such as "Click Here"). If the Label option is not
set, the current Merge field value is used as the label. Alternately the Background Image option can
specify the name of an image file that will be displayed as the button. This filename should have a fully
qualified path.

Note that Background Image can be forced to reference a file on the server by setting Merge command
line "-embedimages N". Otherwise the image file is assumed to be on your computer at the time Merge is
run - and is embedded into the html file.

Fieldtype Radiobutton
This creates one of a (potential) set of radio buttons that the user can select from.

Radiobuttons are generated and defined within DocOrigin somewhat differently than they are in standard
HTML. Each Radiobutton Field within DocOrigin is a distinct field object. When Merge merges data it
expects a data value for every button. (These of course can also be set in Design via the Initial Value
setting.) To group these distinct fields so that they act as a typical input radio buttons (click one, the others
are turned off) you must give them all the same DocOrigin Field name.

When Merge prepares to create Fillable input radio buttons it checks for radiobutton fields which have the
same Field Name and are within the same parent Group or Pane. These will be treated as a radiobutton
group. Alternately any radiobutton which is the only radiobutton within a Pane or Group of that name will
get grouped with other similar "lone" radiobuttons of the same name. This allows (for example) a series of
repeated Panes each with a single radiobutton the "selects" that pane.

The data stream to Merge typically contains separate field values for each radiobutton. These values
control whether the input radiobutton is initally On or Off. Input values of '0', 'N', 'n' or blank are
interpreted as Off - anything else is On.

When radiobuttons are Posted (submitted) to a web server each radiobutton will be individually sent with a
value of '0', 'N', 'n'. Note that this is different from how standard HTML submits radiobuttons.
DocOrigin ensures that every field, whether checked or not, is submitted to the server.

An additional field is also created and submitted for radiobutton groups - with a name of $DO_ followed by
the DocOrigin field name - as in $DO_Type. This can be used to get an indication of which button was
selected - similar to how standard HTML radiobuttons work. On each individual radiobutton field you can
specify a Choice option string. The $DO_ field will be set to that choice string if the radiobutton is selected
at submit time. Both the $DO_ field and the individual button field values are sent to the server.

Merge | Fillable Forms

page 271

Fieldtype Signature
A Signature input field is one where a user can physically sign their name. This is typically done using a
tablet - although a mouse can also be used.

The Signature typically includes as "Clear" button at the top-right for the user to erase what he's drawn and
start again. The label assigned to this is an "X" - but you can change this using the Signature Clear Btn
option.

The Background Image option can be set to the name of an image file on your computer. This acts as a
"watermark" or background to the signature control. It is NOT sent to the server as part of the user's
signature.

When a Signature input field is set to Readonly, the Clear button is NOT displayed and the signature cannot
be altered.

Fieldtype Telephone Number
This displays an input field that expects a telephone number to be entered. Validation is browser-
dependent.

Fieldtype Text
A normal text input field. Both single-line and multi-line fields are supported - depending on the Field
Object Property setting for "Single Line".

Fieldtype Time
Allows user input of a Time

Times are input by selecting from two drop-down lists - hour and minute. If the AM/PM option is selected, a
third AM/PM choice list is also displayed, otherwise, the hour selection is of a 24-hour clock.

The Label setting can specify a label for the hour and minute choice lists - similar to the Date input field.

Fieldtype URL Address
This displays an input field that expects a syntactically correct URL address to be entered. Validation is
browser-dependent.

Tooltip
The Tooltip allows the specification of a Tooltip popup message for a field. When the mouse hovers over
the field in either PDF or HTML forms this message is displayed.

Viewer Attributes
The ViewerAttributes settings are typically used to set actions to be performed by the browser based on
standard html events. For example:

Merge | Fillable Forms

page 272

onclick="DO.submitForm()"

could be used on a submit button to call the standard DocOrigin submitForm function when the user clicks
on the button. The ViewerAttributes text is actual HTML that is inserted as-is into the HTML output
stream - it must be correctly formatted HTML.

The ViewerAttributes can also be defined within standard Merge script by setting
the ._viewerAttributes property of a field.

PDF Viewer Attributes
For PDF fillable forms, the viewer attributes of a pushbutton field could be simply the URL of form
submission target. e.g. http://www.myserver.com/mySubmissionCatcher.php

It might also take the form of:

onclick="myFunction(my args)"

That presumes that you have used the PDF Input event of the form object to script in a function named
myFunction. PDF also uses JavaScript. A fabulous resource for defining JavaScript functions for use in PDF is
the: JavaScript™ for Acrobat® API Reference. Do check out its various submitForm capabilities and its
abilities to enumerate the fields on a form, plus its XML handling.

Data Field Naming Convention
The DocOrigin html driver treats the entire form as a single html <form> structure. When data is submitted
it is typically POSTed to a server address. Data names are fully-qualified data names. Here is a sample of
some data that was echoed back in the browser from a simple php test utility called echo.php (found at
www.docorigin.com/echo.php):

$DO_formName = 'DynaDemo'
page-1:AllDetails:Detail#1:Item = '1'
page-1:AllDetails:Detail#1:Description = 'A fancy item'
page-1:AllDetails:Detail#1:Qty = '1'
page-1:AllDetails:Detail#1:Amount = '$42.00'
page-1:AllDetails:Detail#2:Item = '2'
page-1:AllDetails:Detail#2:Description = 'A standard item'
page-1:AllDetails:Detail#2:Qty = '3'
page-1:AllDetails:Detail#2:Amount = '$38.95'
page-1:AllDetails:Detail#3:Item = '3'
...

In this example, you can see that the first data field is $DO_formName. It contains the name of the form -
the name of the <Form> root object assigned in Design, not the form's file name. $DO_formName will
always be sent for all forms. If you did not rename it in Design it defaults to 'Form1'.

Data fields use the same names as were assigned in Design.

https://docs.docorigin.com/reference-manual/scripting/dom-properties-accessing-the-document-structures#:~:text=See%20._raw.-,._viewerAttributes,-Return%20or%20set
http://www.myserver.com/mySubmissionCatcher.php
https://opensource.adobe.com/dc-acrobat-sdk-docs/

Merge | Fillable Forms

page 273

In this example, the form contains a pane called AllDetails which in turn contains repeated instances of
subpane Detail. Because this pane occurs multiple times, the DO.submitForm() process gives each
instance a unique name - Detail#1, Detail#2, etc. Within each Detail pane there are 4 fields - Item,
Description, Qty, and Amount.

This naming structure results in unique names for all data fields. Your server application can parse this
field naming structure as necessary to map the data to whatever format you require.

See Also

._viewerAttributes

https://docs.docorigin.com/reference-manual/scripting/dom-properties-accessing-the-document-structures#:~:text=See%20._raw.-,._viewerAttributes,-Return%20or%20set

Merge | Fillable Forms

page 274

Fillable HTML Forms

Introduction
The Fillable Forms page described how you can use DocOrigin Design to define input fields for use in HTML
(or PDF). That is all within the DocOrigin domain. This page delves into the 'in-browser' side of fillable HTML
forms. That means that it is mostly outside of the DocOrigin domain, except for when some DocOrigin
provided facilities assist in your browser-side efforts. Mostly, it's up to you.

Within the hosting browser, HTML is wondrously dynamic. Via in-browser JavaScript and CSS you can create
a very engaging, dynamic experience. But it is work.

Generally, we expect that for document generation purposes, that you will keep your interactive HTML
forms quite simple -- to collect a small amount of data and to submit that data to the URL of your choice. If
that is all you need to do then the declarative input field definitions you can make via DocOrigin Design are
all you need. You would not have to enter into the in-browser world of things. That is our general premise,
but you can do more, if you are up for it.

Supplying JavaScript
As always DocOrigin is very 'open'. You can choose to employ HTML-world application construction
technologies -- e.g jQuery or other frameworks. Or you can try to keep your application slim. The door to
this open world begins with the file Default-DOHtmlTemplate.htm, which resides in the ../DO/Bin folder.
As usual, you can override that file by supplying a DOHtmlTemplate.htm (no Default- prefix) file in the .../
User/Overides folder. The DOHtmlTemplate file is a very simple template which contains placeholders
(e.g. *CONTENT*) which DocOrigin Merge replaces with the HTML constructs that it generates. Another way
for you to override the Default-DOHtmlTemplate.htm file is to supply the -HtmTemplate option to
Merge, it can specify a template file that you have modified, quite possibly to contain the inclusion of
various JavaScript libraries (e.g. jquery) or custom CSS files.

 -HtmTemplate $O/MySiteHtmTemplate.htm

Surely you would not vary this on a form-by-form basis but would build up a standard for your entire site.

The next, and more common, area where DocOrigin opens up to the browser world is on a per form basis.
You can enter browser JavaScript, (as opposed to DocOrigin JavaScript with all of its extensions), into the
"HTML Input Event" script area of the form object itself, via the Format-Form Properties... menu item. You
may put JavaScript code directly into that "event" area, but more likely, especially during development, you

The Fillable Forms feature is available under only specific licensing arrangements.

CAUTION: As soon as you enter into the world of JavaScript within the browser, you are entering
into the world of, not form design, not document generation, but application development.
There, you are catering to the interactive whims of your users and also fighting the lack of
standardization across popular browsers. It's a new ball game with new skills required. If you find
yourself rueing the effort, don't blame DocOrigin; it is outside of the product's jurisdiction.

Merge | Fillable Forms

page 275

•

•

•

•
•

•

•

would put in a #include "$$F/ThisForm.js" construct, and then provide your browser JavaScript in that
external file. If you are doing much application development you will likely have to edit it a lot <sigh> and it
proves very convenient to have that editing done in an external text editor that keeps the file open, trial
after trial.

Invoking your JavaScript
Now that you can supply JavaScript for your HTML form, how do you get it invoked? The most direct link is
if you have supplied a viewer attribute on any of your input form objects of the style:
onClick="MyFunction();". Thus, if you supply a function of that name in your JavaScript, it will be invoked.

The aforementioned DOHtmlTemplate.htm file includes a *FOOTER* placeholder. That is normally
replaced by the contents of file DOHtmlFooter.htm, which is also delivered in folder .../DO/Bin. That file is
very well worthwhile looking at. For the topic immediately at hand you might discover in it that if you have
provided a function named Initialize (note the capital I), then it will be called automatically as soon as the
browser has loaded the form.

DocOrigin Assists
While 'in-browser' you are mostly outside of DocOrigin assistance, but some extra functionality is provided
to you for your application-building efforts. Within the generated HTML, a DO object is created. It has some
useful members, most particularly functions you may wish to call from your own JavaScipt. You are well
advised to peruse the DOHtmlFooter.htm file to see what functions are defined within the DO object.

DO.submitForm([url]) is the most commonly used function. It does some vital housekeeping and then
submits the data to the URL of your choice. Before that submit is done it will call a function named PreSubmit, if
you have provided one. If that function returns false then the data submission will not occur.
DO.makeVisible(...) can be used to hide or show a pane based on dynamically determined relevance
predicated on user inputs.
DO.deletePane(...) can be used to discard a pane entirely. It will no longer exist. Its data elements cannot
be submitted.
DO.addPane(...) lets you add a sibling pane right after the pane that the parameters identify.
DO.appendPane(...) lets you append a sibling pane at the current end of the list of such panes. E.g. Add a
pane for an additional dependent or coverage area.
DO.clearPane(...) clears all the input fields in a pane.

As these pane operations occur, the power of HTML dynamism is employed to squeeze the remaining
panes together or spread them apart to make room, as necessary.

DO.message(text) is useful for emitting messages to the user (or the developer!) without using an annoying
alert(). If you were to use this in production, you would probably want to style the presentation to your own
preferences.

Note that this browser JavaScript is not distributed throughout all the objects on the form, but is
provided in one place, in the actual form object's HTML Input Event script area. DocOrigin Merge
will place whatever JavaScript you provide into a <script> element in the <head> section of the
generated HTML.

Merge | Fillable Forms

page 276

•
•
•
•
•
•

There are a few other functions in there, though most others are 'internal'; more may be added for
developer convenience, but we don't wish to bulk up the amount of JavaScript tagging along in every HTML
document we generate.

Accessing Fields
This is not a tutorial on browser JavaScript. Naturally, document.getElementById() and
document.getElementsByTagName("input") are your friends. HTML is open; you can use all of its features
to accomplish your goals. However, some understanding of the construction of a DocOrigin HTML form
could be useful.

Names and IDs
Every HTML input element can have an ID and a name.
If an input element does not have a name, it will not be submitted.
It is the name property, not the ID, that is submitted along with its value.
IDs are thought of as being unique, but with multiple pane instances, that is not the case.
DocOrigin uses the input field's name, as per your design, as the ID.
DocOrigin modifies the name dynamically to reflect the document structure. That name carries which pane it is
in and also the instance of that pane.

So... getting an element by ID is fine, if it occurs only once, i.e. if it is in a "header" pane that ocurs only
once. [Panes become <div>s in HTML.] But if a field occurs multiple times, then its ID will occur multiple
times and you will have to take the appropriate steps to ensure that you fetch/update the correct element.
It is quite possible that for the expected usage of collecting a small amount of information, rather than
being a full-blown application, that the fields of interest will occur only once.

Remember, names change! A great way to get your bearings on the names is to, during development,
submit your form to the http://docorigin.com/echo.php facility (or your copy of that on your own web
server; echo.php is delivered, as an unsupported sample, under .../DO/Samples/Web). By using echo.php
you will see the names of everything that was submitted. That is very instructive.

If you are going to do application development then you really should carefully review DOHtmlFooter.htm
to see how it goes about renaming fields -- not necessarily to understand it fully but possibly to reuse some
of the internal functions that it employs. Either that or develop your own functions for accessing multi-
occurring IDs.

A PHP Wrinkle

PHP is reasonably popular on web servers. We use it in our example code. Alas, PHP does the
nasty thing of translating dots in names to underscores. For that reason, we have chosen to use
colons as name hierarchy separators and then, on the PHP side, we translate those colons back to
dots.

DO submits: Page1:Pane1:GroupName:FieldName

http://docorigin.com/echo.php

Merge | Fillable Forms

page 277

Checkboxes
Browsers have this annoying practice of not submitting anything if a checkbox is not checked. That is
terrible. You really want the submitted/collected data to have a 0 or 1, but to always exist so that the data
can be passed on to other applications.

DocOrigin solves that, at a price. It automatically provides a hidden field that is always submitted, and it
automatically updates that hidden field whenever the checkbox is clicked. Sounds fine, right? Well, beware.
You can get the value of the checkbox from that hidden field, which in fact has the ID of the field name you
supplied in Design. However, to change that value you must set the checked property of the previous
sibling. Consider a checkbox named, in Design, as Foo.

// Setting a checkbox to true
var el = document.getElementById("Foo");
// The checkbox value, 0, or 1 is at el.value.
el.previousSibling.checked = true;
// That set the checkbox as being checked, but did not change the el.value
el.value = "1";
// This occurs automatically when a user clicks on a checkbox.
// But programmatically, you have more responsibilities.

Repeating: It is always good practice to use echo.php to see what is being submitted.

Radio Buttons
Browsers have this annoying practice of not submitting anything if a radio button is not checked. That is
terrible. You really want the submitted/collected data to have a 0 or 1, for each button, so that data can be
easily passed on to other applications.

DocOrigin solves that, at a price. Sound familiar? Each radio button is shadowed by a hidden field. All such
hidden fields are updated whenever any radio button in the set is clicked. But let's work through an
example.

Let's say that you are collecting the user's credit card of choice. You provide three radio buttons in the set:
Amex, Visa, and Mastercard. As always, all the radio buttons in the set have to have the same name. Let's
say we chose "CC" as that name. It's a nice idea, if possible, to put all of those radio button input fields into
a group; quite likely naming the group CC as well.

echo.php reports Page1.Pane1.GroupName.FieldName

Having underscores as hierarchy separators is useless since object names themselves can contain
underscores. PHP provides no means to look at the raw data as submitted if that data submission
is in multipart form encoded format (which it is for DO HTML submissions). Shame on you PHP.
php://input does not work for multipart format. If dear reader, you can find a means, in PHP, to get
at the data as submitted, we'd love to hear it.

php://input does

Merge | Fillable Forms

page 278

Of course, you will immediately use echo.php to see what is submitted when you check Visa for example.
You will see:

Page1:Pane1:CC:CC#1 = '0'
Page1:Pane1:CC:$DO_CC = 'Visa'
Page1:Pane1:CC:CC#2 = '1'
Page1:Pane1:CC:CC#3 = '0'

What a bonanza! Each radio button named CC is represented by a name of CC#n, where that n goes from 1
to however many radio buttons there are in the set. You get all of their individual settings. Additionally, you
get a $DO_CC field which holds the value you defined for the chosen radio button, in the "Choice:" property
of its input dialog.

This is great for downstream processing of the submitted data (and in a generic way). It permits the
creation of XML that can be passed along and even be given to DocOrigin Merge to produce a new
document, in HTML, PDF, or whatever.

The price. When you want the logical value of the radio button set named CC, you have to ask for $DO_CC.
But no, not even that works. That is because there are several radio button fields, each with the ID $DO_CC.
Only one gets submitted because that's the way that browsers choose to operate. They submit only the
one that was checked.

What can you do? You have several standard browser JavaScript ways to get all the input fields, or all the
radio button fields. (document.getElementsByTagName("input") or
document.getElementsByClassName('DO_radio') -- all DocOrigin radio button fields get the class name
DO_radio). Anyway, you can then run through that array of elements and look at their IDs. If the ID is
$DO_CC you can then check whether its checked property is true or false. If it is true, you can use its value
property as the value of the radio button set. Surely, you will develop a function for that once and use it
over and over.

That's fine for fetching the value. What about setting it? Just as for checkboxes it is all done automatically in
reaction to user clicks but if you set a radio button to checked via JavaScript, then you have to take on the
responsibility of updating the hidden shadow fields as well. As it happens there is a DO.prepRadio()
function which circles around the whole document and ensures that the hidden shadow fields for radio
buttons each reflect their counterpart real radio button field's checked status.

Across Panes Radio Buttons
We like to think that most radio button sets will be inside a single pane and that you will take the effort to
group those out of a sense of tidiness. However, fillable HTML forms, (and not fillable PDF forms), support
the ability to string out a radio button set across many panes. Typically a recurring pane would have one
radio button of the set in each instance of the pane (think of each pane as offering a radio button
selectable choice to the user). Naturally, such radio buttons cannot be grouped. However, since the radio
buttons do all have the same name (in Design), they will be treated as part of a radio button set.
Operations will be as described in the foregoing paragraphs.

Merge | Fillable Forms

page 279

Multi-instance Context
Suppose that you have defined an OnClick event on an input field, and it invokes a function you provide.
Great, but hey, what context are you in? If this field occurs in a pane that can occur multiple times, just
which occurrence are you in? If you want to do an Amount = Price * Quantity calculation, you had better be
using elements from the same instance of the pane that reacted to your OnClick event.

I'm sure that you can invent navigation algorithms that let you figure out where you are in the DOM, and
then 'walk the DOM' appropriately to find your elements of interest. Getting the list of all input elements
(document.getElementsByTagName("input")) and wandering that array looking for your this object might
be one way. One thing that helps is employing a consistent ID'ing style -- i.e. the names that you provide in
Design for pages, panes, and groups. That suggests another approach.

As you have seen, DocOrigin changes the names of fields dynamically to reflect the latest number of
occurrences of each pane. It comes up with names such as:

 Page1:Pane1#2:CC:CC#1

As it is programmatically produced, it is obviously consistent. If a pane occurs multiple times it has a #n
appended to that segment of the name. Those names are updated just before DO.submitForm() does a
submit. But we can steal some of that. Consider:

var form = document.forms[0];
for (var p=form.firstChild; p; p=p.nextSibling) {
 DO.renameFields(p, ""); // give fields an A.B#2.C type of structure
}

Your code could do that. Then you could look at the .name property of the field that invoked your function
(or whatever context you are in), and you would see the hierarchy of your object of interest. You have your
context.

You could do just:

 DO.renameFields(document.forms[0], "");

and then ignore the first segment of every name since it will always be the same -- the name of the form
object itself. But you would have established your context. On a DO.submitForm the fields will be renamed
to their proper ready-for-submission text.

Group Visibility
Sometimes it is not only fields that are of interest. A typical case is that of a group of objects. You may wish
to make them appear or disappear based on user interaction. Named-in-Design groups get IDs as well, so
you can get their element object and set their .style.display property as appropriate. Just standard
browser JavaScript.

Merge | Fillable Forms

page 280

Pages / Tabs
By default, DocOrigin Merge puts each page of the generated HTML document into a tab whose name is
the page name, plus the occurrence number if that page layout occurs multiple times. A function named
DO.showPage(pageName) can be used to switch focus to a specific tab, should you ever wish to wrest that
decision away from your user.

A tabbed presentation of pages is not always wanted. You can control that with the command line option:

 -HtmNavBar none

In which case the generated "pages" will be displayed as a single HTML page through which the user would
scroll. The length of each heretofore page is trimmed of white space from the bottom so as to reduce the
need for scrolling.

The opposite, and default, setting is:

-HtmNavBar tab.

Previewing Your HTML
DocOrigin Design offers a Tools-HTML Preview... menu item. If you don't want to change any options from
your last preview, you can just hit F7. (You'll be using that a lot.)

What happens is that after Merge creates the HTML output, it directs it to a .bat file named Default-
HtmlPreview.bat. Naturally, that is delivered in .../DO/Bin. You should read that .bat file! Note that it
offers you the opportunity to supply your own .bat file in $O/HtmlPreview.bat. ($O is .../User/Overrides).
If you read the .bat file, you will see that it makes reference to other sample .bat files that may help you in
better testing your generated HTML.

The dialog that invokes Merge's generation of the HTML has a curious little field in its bottom left corner,
labeled HTMLPreview.bat option:. You can put anything you like in there. It will be passed to your
HTMLPreview.bat file as an optional third parameter. You can choose to interpret what you enter any way
you like. The samples mentioned earlier use that field as a means to choose whether to preview in Chrome,
Firefox, or IE. Getting your forms to look and function properly in all the popular browsers is a challenge.
This provides a means to see what's up.

Merge | Fillable Forms

page 281

Fillable PDF Forms

Introduction
DocOrigin supports the creation of PDF documents that contain Acroform fields to capture input from the
user.

Compared to HTML, fillable PDF forms are limited. The big difference is that with HTML you can have an
ever-lengthening page, allowing for much greater dynamism in a fillable HTML form while it is being viewed
in the browser. With PDF forms, all of the dynamic instantiations of panes and pagination occurs within
DocOrigin Merge -- once Merge produces the PDF, that PDF will be constrained to having only the panes
that it was generated with. No panes can be added, deleted or even hidden while in your PDF Reader
technology. Fields will not grow in width or height, though Adobe Reader does provide scrolling for multi-
line input fields. All objects remain the same size -- it's a very static layout.

Still, it is quite useful to have a PDF in which a user can enter data, and then possibly print it out, or submit
it to an URL that you have provided in your form design, such that you can collect the information and
process it as befits your needs. It's possible that as part of that processing you will update databases,
invoke other applications, and even invoke DocOrigin Merge on your web server with the same or a
different form with captured and augmented data.

Supported input types: Text fields (single line and multi-line), checkboxes, radio buttons, dropdown
choice lists (i.e. one line tall, with a drop list to show the choices), hidden, password, and push/submit
buttons.

Unsupported input types: File, Date, Time, Email Address, URL Address, Number, Telephone Number, and
Signature. Mostly those are HTML5 field types so their non-support in PDF is not surprising.

Input attributes:
A field may be marked as "readonly" and as such the value provided to it when Merge generated the form
cannot be changed by the user.

The "required" option is also supported in PDF forms. When a submit is done, fields marked as required
will be checked for content and a diagnostic issued if there is none. Any specification of a custom message
will be ignored.

Tooltips can be specified; they will be displayed when the user hovers over the relevant field.

Hidden field: Do note the difference between an input field type of hidden versus a design object being
marked as invisible. In the latter case, the object won't even be represented in the PDF. In the former case,
the field is in the PDF but hidden from the user. You could access it via JavaScript.

Password field: Characters typed into a password field are displayed as asterisks, though the correct
values are submitted. NOTE: If a password field is left empty then that field will not be submitted at all.

The Fillable Forms feature is available under only specific licensing arrangements.

Merge | Fillable Forms

page 282

Responding to User Inputs

While you can't, with any sort of reasonable effort, change the layout of the PDF once it is displayed in the
Reader you can still react to the entries that your user is providing. For the most part that means supplying
or altering data that is in the form. And of course, you can cause the submission of the collected data to an
URL of your choice.

If all you want to do is collect the data as entered and submit it, then that can all be done declaratively with
the DocOrigin Design tool. No further 'in the Reader' effort is required.

If you wish to manipulate the data while 'in the Reader' this can be done using JavaScript. Note that this is
not DocOrigin JavaScript, complete with all of its amazing extensions, but rather the JavaScript supported
by the Reader. A good reference for this is: JavaScript™ for Acrobat® API Reference. That is a long and
sometimes challenging read; you likely have more simple goals in mind. The following tries to grease those
wheels, but you can most certainly fall back to that reference manual.

For a developer, a useful resource is always some code to look over. DocOrigin ships a critical piece of
JavaScript for use in the Reader. It is called Default-DOPDFScript.js and is delivered in the .../DO/Bin folder.
Note that it is .js and not .wjs. As usual, you can override that file by supplying your own DOPDFScript.js
(no Default- prefix) in the .../User/Overrides folder. The important thing about this file is that it is included
verbatim in every DocOrigin produced fillable PDF document. It is the thread that starts the ball rolling in
terms of getting your own JavaScript code operating inside the Reader. And it happens to show some
JavaScript code that may be of interest to a developer.

That's nice, but how do you get your own JavaScript code into the PDF; you certainly are not allowed to edit
a file that resides in .../DO/Bin. You put your JavaScript in the "PDF Input Event" of the form object, via
DocOrigin Design's Format-Form Properties menu item. You might well specify a single: #include "$$F/
MyScript.js" line in that location, and then edit the referenced external file. That is often convenient,
especially during development. DocOrigin Merge will append whatever you define in the PDF Input Event
(and what it #includes) into the generated PDF document. Your code will immediately follow the code you
see in DOPDFScript.js. There... now you can get your own JavaScript into the PDF.

But what can you do using JavaScript? Lots, if you read that whole reference manual. But more likely you
simply want read/write access to the values of the fields on the form. This is not overly difficult in a PDF
since there won't be any dynamic additions/removals of panes. What you start out with is what you have.
[Yes, you, having thoroughly digested the entire reference manual, and really being in the wrong business,
could manage to alter the form layout and content while in the Reader, but that is not the goal here.]

The Reader

Definition: "the Reader" -- more than one application exists that can display PDF files. Of course,
the most widely known one is Adobe Reader, but there is also Acrobat, Foxit Reader, the Google
Chrome PDF extension, ... Below, references to "the Reader" means whichever technology is being
used to display the PDF. (akin to "the browser" for HTML documents). Not all PDF Readers perform
to the same standard.
Sadly, Chrome's built-in PDF plugin does not support fillable PDF at all. You can neither enter data
nor submit it. Useless.

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf

Merge | Fillable Forms

page 283

Getting a field's value
Consider the following:

 var fName = "MyInterestingField";
 var f = DO.doc.getField(fName);
 var v = f.value;
 //console.println("Field " + fName + " has value " + v);
 f.value = "I clobbered it's value";

Well, that's pretty easy. DO.doc is literal. Its value is defined by DOPDFScript.js. Often you could use this
instead. But you can be assured that DO.doc always refers to the DocOrigin generated document in the
PDF, no matter what context you find yourself in.

Now your only problem is knowing what the names of the fields are. The code in DOPDFScript.js shows
how you can enumerate the fields; then you could examine their ".name" attribute. Generally, the names
are of the style:

Page1.Pane1.GroupName.FieldName

Another great way to know the names of the fields in your PDF document is to use, during development, a
submit button that submits the data to "http://docorigin.com/echo.php". All it does is echo out the names
and values of the fields in the form. The echo.php file is also provided, as an unsupported sample, in .../
DO/Samples/Web. You could alter it (or not) and deploy it onto your own web server. We really have no
interest in seeing the data that your forms submit! We certainly don't collect it.

We can't emphasize enough just how instructive it is to see the names of the fields as they are / would be
submitted. Highly informative. In there, you would see some special $DO_xxxxx fields that provide some
context, and also how radio button group values are submitted.

Radio Buttons
First off, for fillable PDF forms, you MUST enclose your radio button sets in a DocOrigin group construct. Of
course, all of the radio buttons in the set must have the same name. It may be a fine idea to give that
enclosing group that very same name too. The group construct should have no other objects within it; just
the same-named radio button fields.

Unlike HTML, PDF radio button sets must be contained within a single pane.

Every radio button input field must be given a "Choice:" value in the field's Input dialog, or via DocOrigin
Merge script, before the PDF is actually output. Using the classic credit card example, these choices could

Debugging

It is extremely useful, during development to use the console.println function to debug out the
values that you are encountering. Of course, a useful initial operation to perform is:
 console.clear();console.show();

That causes the Reader's JavaScript console to appear so that you can see your debug output.

http://docorigin.com/echo.php

Merge | Fillable Forms

page 284

be: American Express, Visa, or Mastercard. They define the value to be associated (and submitted!) as the
value of the overall radio button set.

Let's say that we have a radio button set in which all of the radio button fields are named: CreditCard, and
they are grouped in a group named, for lack of imagination, CreditCard. The leaf (trailing) node of the field
that is submitted would be: $DO_CreditCard. It is a specially manufactured field that contains the current
value for the radio button set. If there were three individual radio buttons (PDF-ese would call them
widgets), they too would have values submitted, named: CreditCard#1, CreditCard#2, and CreditCard#3.
Their values would be only either '0' or '1', indicating whether that particular widget was checked or not.
This is accomplished through very special DocOrigin Merge fillable PDF construction. It is useful to have
that in the submitted data in order to generically produce an XML file that can be reprocessed by DocOrigin
Merge. Of course, the overall radio button set value, as submitted in $DO_CreditCard is quite invaluable
too. It, for example, might contain the value Visa.

Set the radio button value
You do not set the value of a radio button set directly, using its .value property. Instead, you check one of
the buttons within the set. This can be done with the Reader-provided functions:

 var f = DO.doc.getField("$DO_MyRBSet"); // of course the name would be a hierarchical
name
 f.checkThisBox(2); // 0-based, so check the 3rd radio button

For what it is worth, you can determine whether any individual button is set by using the
f.isBoxChecked(i) function. Since the .value property of the radio button group object always reflects
the button that is checked, using the isBoxChecked() function is pretty exotic.

Push/Submit Buttons
There is no difference between Pushbutton and Submit Button. You can provide an URL target in either
case. Somewhat more interesting is that you can provide a "Viewer attribute" such as
 onClick="MyFunction();". In fact, this can be done on any field. When the user clicks on the field
(actually when they 'mouse up' on the field) the on-click code will be called.

You can define your functions in your own JavaScript which you know how to get into the PDF. Also, there
are a number of actions beyond 'onClick' but that one is the most common one.

No Radio Button Selected

If you are insane and design a form where it's possible that no radio button is selected, then that is
what your user will see. If they do not choose any radio button, then nothing will be submitted for
that radio button group. Downstream processing tends to have more difficulty with processing the
absence of data as opposed to actual data. Don't do that. Use "none of the above" if you have to.

Merge | Fillable Forms

page 285

Special Functions
Initialize(): If you look at DOPDFScript.js you can see that, as soon as the PDF is loaded, it will call a
function named Initialize if you have provided one. Do note the uppercase I. It is case-sensitive. Naturally,
that is a great place to do, well, initializations.

PreSubmit(): If you attempt to do a form submission, via DO.submitForm -- which is the standard way --
then it will call a function named PreSubmit, if you have provided one. If that function returns false, then
the submit operation will not be done.

Binding Script
As submitted by commenter Yaroslav - Thanks.

Another common case is to bind script to a particular event, e.g. field value change.

This can be implemented using the setAction() method. For instance:

this.getField("FieldName").setAction("Keystroke", "some JS code");

Merge | Pagination

page 286

Pagination
Automatic pagination is one of the primary features of any document generation system. Well, "automatic"
but with control! Conceptually, pagination is dead simple: when you run out of paper, start a new sheet.
When you want control over that process it becomes substantially more difficult than that. But that's the
developer moaning. It has to be easy for the user.

Let's back up for a second. What happened just before pagination? Data merge happened. That means that
there is now a big DOM full of instantiated panes. Typically poor old "page 1" has a container that is
bursting with panes – way more than its container can possibly hold. Data merging doesn't care about that.
To it, pages/containers are of infinite capacity. Then along comes pagination to face the real world with its
physical limits.

If no control were offered, pagination would/could just see if a pane fits in the container, and if it does,
great, get the next pane, but if it doesn't, well start a new page and put the overflowing pane there.
Simple. ... but it's not.

What do you mean pane? Sure there are some simple form designs where there is simply one "leaf node"
pane after another, but mostly one has a hierarchy of panes where one pane encloses several other panes,
etc. Now, what does it mean when we think "if the pane doesn't fit"? Which pane? The outer pane, some
inner pane... what?

Besides, even in the simple case of a sweet string of leaf node panes, you won't be happy if pagination
does a new page between any old pair of panes. You have to be kind to "widows and orphans". It's a life
rule.

For example, it's unlikely that you want a column header pane to be the last pane on a page – widowed
there. It's equally unlikely that you want a totals pane, signature block, or even first of a set of detail lines to
be the first thing on a page -orphaned there. In real applications, panes like context.

That control is provided to you via the usual modal and modeless property dialogs for pane objects.

You need control

Corollary – you need to conscientiously apply that control or face the penalties for inattentiveness.

Merge | Pagination

page 287

Modeless Pane Properties Modal Pane Properties

The modal properties are shown because they have a bit more text so as to explain what the checkboxes
mean. One important piece of text is missing though. The context of these checkboxes is within this
pane's immediate parent. It is not a 'within the entire document' context.

For example, consider the "Allow Multiple" checkbox. Sure a pane can occur lots of times within a whole
document, but what matters is whether it is able to occur multiple times within the pane's immediate
parent. Always keep that implicit context in mind.

Pagination Checkboxes
The checkboxes are damnably simple. So simple that one tends to gloss over them, not giving them the
attention they deserve. Beware of deadly results. Pay attention to the checkboxes for each and every pane;
the high-level ones and the itsy-bitsy bottom-level leaf node ones.

Mandatory
Does this pane have to come out even if there is no data for any of the fields in the pane (or the pane has
no fields)?

Careful though, a footer pane may seem mandatory in that you really do want it to come out, but it is
forced out by means of an Overflow Footer specification. Think about it. Do you want the pane to come out
where it sits in the form design, no matter what?

Merge | Pagination

page 288

In the case of a detail type usage pane, must it come out, or are there perfectly valid situations where there
might be no detail lines?

Allow Multiple
The only trick here is to realize that the question is being asked in the context of the pane's immediate
parent. In that context, is it allowed to come out more than once? Does the tag name for this pane occur
multiple times in the XML file – within the context of its parent?

Too often we see an enclosing pane marked as allow multiple and its sole or at least primary child pane
also marked as allow multiple. That might be right but please do look at it and decide if perhaps one of
them should not be marked as allow multiple.

Allow Split
Containers will fill up with 'too many panes'. Something has to be done. When a pane, first at the
outermost level of the panes in the hierarchy, overflows its container you want to control whether to push
the whole pane over to a new page or to allow the pane to be split leaving as much as can fit on the current
page stay on the current page, and only the rest move to the new page.

Panes that enclose other panes are more likely to need the "Allow Split" setting turned on. Not always, as
sometimes there is a tightly knit group of panes that are meant to stay together. Look carefully.

Where will it split the pane? You are in control of that using these same checkboxes throughout the child
panes of the overflowing pane. First of all, if the pane that overflows the container is a leaf node pane (has
no child panes) but is marked as allow split, then it will be split at the lowest possible place where there is a
gap in the extents of the objects in that pane. E.g.
between a row of fields. By 'lowest' we mean a split point that keeps as much as possible on the current
page; that makes maximum use of the paper stock.

How much room is there? Nothing is easy for the code. Enjoy the fact that you need to only click a few
boxes. How much room is available is determined not only by the container size but also by the size of the
overflow footers that apply to the pane being split. The footers for pane A are not necessarily the same as
the footers for Pane B. So the available room varies.

But of course, the pane that overflows is likely going to be an enclosing pane, a pane with child panes. At
that point the pagination code will recurse down a level looking for a good spot to split between the child
panes or possibly within a leaf node child pane. The applicable footers may change.

Finding that split point is controlled by your settings of "Allow Split", "Break Before" and "Break After".

Allow Break Before
That is "Allow break before". This is not forcing the pagination code to break before this pane is used but
merely allowing this pane to become the first pane on a new page.

I like to personify the pane this way. If I check Allow Break then I am saying I am so strong that I can leave
the nest, start out on a new page all by myself. I don't need any elder sibling or mama. I'm good to go.

Merge | Pagination

page 289

Conversely, if I don't check Allow Break, it is saying that I am too weak to stand on my own. I need an elder
sibling or my mama. Don't orphan me. I need my context.

As it happens, leave Allow Break Before off almost all the time. You do not want a break before headings.
You don't want a break before the first in a series of detail lines – you want to cuddle up under the detail
line headings. You probably don't want a break before a totals type usage pane. It would just be odd to
have a total with no context as to what it is totalling, so usually you want to drag along the last detail line.
"Usually", you can choose to put Break Before on if you want. Similarly, a signature type usage pane
probably wants some context dragged on its page.

But there are times when a document contains, oh, sections. These sections are strong. They can start out
on their own. You could easily want to mark the first pane of a section as "Allow Break Before".

Allow Break After
That is "Allow break after", not force break after. This is the protective mama end of the spectrum. Leaving
this off says that you don't want your kids, well, your younger siblings, to be sent off in the world on their
own. You want to wrap them to your bosom by keeping them on the same page where you can "look after
them" by providing your context. Or like saying "Don't abandon me, or leave me a widow". Conversely,
checking Break After means that you have faith in your younger siblings, faith that they can stand on their
own.

Less personified, the example is of the details header pane that says "don't break after me", my, at least
eldest detail line has to be on my page – or move me too.

Like Allow Break Before, you pretty much always have Allow Break After unchecked. Think about it. Where
would you really want to say it's ok to break after this pane? Certainly not immediately after a header pane
– it's a header for something that wants that header context. Continue thinking like that as you imagine the
various pane usage types and you'll see that allowing break after is a rarity.

Allow Break Between
What? There is no "Allow Break Between" checkbox. Correct. Merge pagination always believes that it can
break between two successive instances of the same pane. That's automatically always true.

It is this implicit Allow Break Between setting that takes all the steam out of Allow Break Before and Allow
Break After. Allow
Break Before really means "Allow Break Before the first occurrence of this pane" (in its parent's context),
and Allow Break After really means "Allow Break After the last occurrence of this pane" (in its parent's
context). Both of those cases are generally false, but break between – well, that's a winner. There's context
on both pages so breaking feels great.

Force Page
This is the pagination code's friend. No hassle, no thought, do as commanded. If it encounters a pane with
this checked, it will immediately start a new page. One exception is if the current page's container has

Merge | Pagination

page 290

nothing in it, then Force Page will do nothing.
You almost never set Force Page. Let pagination do its thing.

Layout in multiple columns
If pane has "Layout in multiple columns" checked then Pagination Algorithm tries to arrange the pane's
children panes in multiple columns interpreting this pane as a kind of a "container".

Minimum Height
What is this about anyway? Well, when drawing out a pane on the Design canvas it can be convenient to
leave space at the bottom of the pane, just to have room to mouse around in. You more clearly see the
objects in the pane without confusing them with the bottom edge of the pane. Whitespace is your design-
time friend.

But do you want that whitespace to show up in the rendered documents? Probably not. So by setting
Minimum Height to something really small you are allowing Merge to throw away all the whitespace below
the lowest object in the pane. That is generally what you want to do.

But what if you do want whitespace at the bottom of your pane? Merge will always respect your bottom
margin specification. So specify all the whitespace you want via the bottom margin setting. Alternatively
you can draw out your pane to the exact height you want it to be, including whitespace at the bottom. Then
you can select the "(full height)" setting for the Minimum Height setting. You don't need to set a bottom
margin in that case.

Column balancing

By default children, panes are evenly balanced between the columns. As of version 3.2.001.09, it's
possible to disable balancing with a tag "BalancedColumns No" set for the "Layout in multiple
columns" pane. It can also be set globally when used as a Merge command line option.

Footers/Headers

Footers/Headers defined for the "Layout in multiple columns" pane(or its parents) are applied
when the pane itself is being split between pages. If you want footers/headers for the columns
then you should define footers/headers for the children panes keeping in mind that in this case
"OnSplit" occurs when the pane is being split between columns.

Merge | Pagination

page 291

A small number? Zero is small isn't it? Yes, it is, but zero is actually the encoding for "(full height)", so don't
use zero, use a small number.

Pagination Generalities
But don't even dream about not paying attention every time.

Setting Value

Mandatory On a lot of the time

Allow Multiple Mostly off, unless it's a repeating detail type pane

Allow Split On a lot, especially for enclosing panes, and panes over 1
"row" high

Force Page Almost never on

Allow Break Before Rarely on, but sometimes

Allow Break After Rarely on, but sometimes

Allow Break Between Automatically on all the time

Minimum Height Mostly a very small size (.001)

Footers/Headers
Note that besides OnSplit Footers/Headers for a pane, it's also possible to define Overflow Footers/
Headers for a container. Though only the closest ones to the split point are applied, i.e. footers/headers
are not accumulated going up the objects hierarchy from the split point.

Min Height of Panes that wrap other panes

The setting "(full height)" means the full height as seen at Design time, i.e. the height that you drew
the pane(s) out at. An enclosing pane may include all sorts of optional panes. It makes no sense to
set the Minimum Height of an enclosing pane to "(full height)". They should always have a very
small minimum height and let them be as tall as they need to be. Use a bottom margin as
applicable.

Merge | Pagination

page 292

Modeless Container Properties Modal Container Properties

There is a difference in how footers/headers are applied depending on the pagination version. See
Pagination Algorithm.

https://docs.docorigin.com/reference-manual/merge/pagination#:~:text=Pagination%20Algorithm.-,Pagination%20Algorithm,-As%20of%203.1.002.06

Merge | Pagination

page 293

•
•
•

•

Pagination Algorithm
As of 3.1.002.06 version of "Pagination Algorithm" is the property of the form. The difference between
different pagination versions is how footer/headers are applied in the split point.

Version Description

Version 1
(relaxed)

Pagination Algorithm looks for the footers/headers defined for the pane being moved to
the next page (first one in the set of moved panes).

Version 2
(strict)

Pagination Algorithm looks for the footers/headers defined for the pane being split.

Pagination Algorithm gets complex really fast but some high-level insight might help.

Determine the container height
Walk down the list of panes until one causes overflow (consider footers)
Walk back up the list of panes looking for...

A pane that is splittable

Merge | Pagination

page 294

•

•
•

•

•
•

•
•

•

Or a pane that is marked as Allow Break Before and has an elder sibling that is marked as Allow Break
After.

If no split point is found...
Walk back up the list of panes looking for...

A pane that is marked Allow Break Before and simply has an elder sibling, regardless of its Break
After setting.

If no split point is found yet...
Walk back up the list of panes looking for...

A pane whose elder sibling has Allow Break After set.
If still no split point is found...

Split before the pane that overflowed regardless, as long as it is not the only pane in the container. Else
log a message.

When dealing with a pane that is marked as "Allow Split", then the algorithm for finding the split point in it
is much the same as that for a container. In extremis, it may have to split a leaf node pane somewhere
between its objects.

Splitting a leaf node pane between its objects has its own set of difficulties when one considers long
vertical lines, tables, borders and the like.

Merge | Processing Instructions

page 295

•
•

Processing Instructions
(As of version 3.2.001.09)

Merge supports Processing Instructions (PI) located in XML data file.

It is a usability feature which may be used if at data generation time you know all the parameters Merge
needs and do not want to specify them for Merge later.

Merge PI are similar to FM PI but related to Merge, not FM. In FM world PI help to identify job name or run
Merge directly without any scripts involved. In the Merge world, PI allow to run Merge without specifying
additional parameters.

For example, put this line right after tag of your data file and run Merge as "Merge -data yourData.xml" to
get data merged with $F\Invoice1.xatw form, PCL output created and sent to OfficePrinter5.

<?DocOrigin form="$F\Invoice1.xatw" config="Default-LJ4.prt"
output="prt::OfficePrinter5"?>

Note, that Merge PI have "medium" priority, they overpower properties from PRM files but user-specified
CLO overpower PI.

For example, process the same data file as "Merge -data yourData.xml -config Default-PDF.prt" and
you will get PDF (instead of PCL) sent to OfficePrinter5.

"Do PI always applied?", "How does Merge know when to use PI?" you may ask. Merge applies PI from data file
only when:

User specified -data parameter but didn't specify -form.
All PI items are valid Merge parameters.

Some options are more likely to be seen in Merge PI than others. For example, it is mandatory to have
-form in PI but it makes almost to sense to specify something like -logfile there.

Probably needless to say that you have to be careful with relative and absolute path used in PI. Your data
file may be processed on a different computer than planned, computer config or file system may change
over time and your data will have wrong PI hardcoded. There are pros and cons, it is up to you to decide if
you need this feature and find a balance between flexibility and simplicity.

See Also

Job Name Discovery

Merge | Profile Files

page 296

Profile Files
Merge allows the use of simple text profile files (or "ini" files) to provide data that can be load (or
preloaded) into your Merge run. This mechanism provides a simple way to configure or customize a form
definition externally, without needing to alter the actual form template in Design. This can be helpful when
a single form is customized for different user groups such as branch offices or departments.

A Profile file is one that is typically loaded via a Merge command-line option (-profile) prior to any
document or script processing. There is also a _file.readIniFile function which is recommended if you wish
to simply read a .ini file into your JavaScript code.

Profile File Format
See the _profile section for details on the file format. Profile files look like standard generic .ini files but
have additional capabilities as described below.

Opening a Profile File
As well as using the script _profile.load() function you can specify a Profile file to be opened by Merge by
using the command line option

-profile filename

This will open the specified profile file at the start of the Merge process. The data will remain available
throughout the Merge run unless a different file is opened using the script _profile.load(filename) call.

Profile Values as Merge Embedded Fields
The DocOrigin Merge program allows additional Profile features that are not available in other DocOrigin
Modules. Profile settings can be referenced via the DocOrigin embedded field mechanism. See Auto/
Embedded Fields. This allows values to be automatically inserted into Text Labels and Fields when Merge is
run. So for example a text label might be defined as the string:

Note that these are NOT DocOrigin/Merge configuration files, they are for you the programmer to
use for building your form/document application.

One profile file at a time!

The contents of only one profile file are available at one time. Referencing another profile file
overwrites all the info from a prior profile file. See the _file.readIniFile function for reading and
retaining the info for multiple generic .ini files (but with no special "profile" actions). The contents
of the last loaded profile are available throughout the Merge run. They survive document
boundaries.

Merge | Profile Files

page 297

Label = The city of [!profile Address.city] in [!profile Address.state].

which at runtime, using our example, would be converted to

The city of San Jose in California.

Note that the [!profile] definition uses a dot to separate the profile section name from the key. This
embedded substitution may also be used in Field initial values as well as actual Field values.

Using a Profile to Modify Form Objects

A powerful feature of the Profile is its ability to modify or customize a Form template in Merge. You can use
a profile to modify text labels, fonts, and colors as well as re-position certain objects on the page. These
features can be used to allow a single form design to be customized to a particular customer's name,
address, logo, etc. without the need of either JavaScript or modifying the form in Design. While not as
powerful or flexible as actual form re-design, this feature can be used where a standard, stock form
requires minor tailoring for various clients or uses.

In essence, these are "actions" that modify a form design as Merge is initializing. Each performs some sort
of action on a selected object in the form.

Another use of these customization features is the ability to create a single form which is to be presented
in several languages. Each of the fixed titles, field names, etc. can be re-assigned a new (translated) value
when Merge runs. Using a simple bit of scripting one can even dynamically choose the language at run-
time based on an incoming field value.

There are several pre-defined profile section names that trigger these dynamic actions. All these special
section names are preceded by an asterisk - as in
[*Font].

[*Assign] - assign new text to a Label or Field

[*Assign]
; Assign a value to a Field, Label, or Image.
Pane1.Prompt = "Approved by:"
Address = DocOrigin Corp.\n2364 Pollock Rd\nYourtown, Ont.
Logo = $U/Logos/YourTown.jpg

The above would search for a Field or Text Label called Pane1.Prompt and change its value to "Approved
by:". Similarly, the Address, a multi-line label, is reset. The static image object called Logo is changed to
display the given image file.

Learn to use the power of true profile files (not just .ini files)

Note that Profiles are more powerful than generic .ini files. Please examine the available "actions"
below and consider the script-free opportunities.

Merge | Profile Files

page 298

If you use the *Assign mechanism to modify a Field value, it effectively sets a (possibly new) default value
for the Field. The subsequent merging of data into the form will of course override this default provided
that there is in fact data for that specific field name.

[*Color] - Change an Object's Color(s)

[*Color]
; Reset color of an object.
; <foreground>, <background>, <border>, <shading pattern>
; Patterns are horizontal vertical crosshatch diagonal reversediagonal
diagonalcrosshatch

Footer = white,black
Declaration = , #ddd, #ddd, diagonal

The above settings will change a label named Footer to display white text on a black background. The
Declaration label will change it's background to a diagonal-stripe of color #ddd (a light gray) and also turn
on a border of the same color. See the Colors page for information on built-in colors and defining arbitrary
colors.

Note that *Colors can set the color of any object - rectangles, panes, lines, etc. as well.

[*Font] - Change Field or Label Font Settings

[*Font]
; Reset font information for a Field or Label
; <typeface>,<point size>, <B/I/BI>, <horizontal justify>, <vertical justify>
; if value omitted, it remains the same as in the design.
; <horizontal justify> can be left, right, center, spread, or spreadall
; <vertical justify> can be top, middle, or bottom

Address = Courier New, 9pt, B, right
Pane1.Prompt = ,12

The above will change the Address string to use Courier New font, 9 points, and bolded. It also right-
justifies each line of the address. The Pane1.Prompt string is changed to 12-point text, with other font
settings left untouched.

Note that *Font changes will NOT work for Text Labels that have embedded font changes (RTF) already in
them.

[*Visible] - Show or Hide an Object

[*Visible]
; Change an object's visiblity
; = N or No - to make invisible
Footer = No

Merge | Profile Files

page 299

Declaration = Yes
Address =
TearOffLine = N

The above settings make the Footer invisible, Declaration visible, and leaves Address unchanged. The
object (presumably a line object) named TearOffLine is also made invisible.

Wow! Variants!

Power! Variants allow you to rename objects to establish use of whole alternate sections of a form.
And this is done dynamically on a data-driven, per document, basis.

Merge | Profile Files

page 300

[@Variant]
(As of 3.1.001.25)

Select a variant of an Object

Section names starting with an '@' character are processed at the start of each document (rather than the
usual start-of-job) This means they affect each document individually.

The @Variant action is to rename an object. It is typically used with Panes when a table or structure may
want a slightly different layout of a table row or other collection of fields for different customers - but all
using the same form template.

Consider a form that displays a repeating row of data called 'Detail'. Normally you would create a Pane or
Row in the form design called 'Detail' and put the data fields inside it. But in this case, the layout of that
'Detail' row must appear differently depending on some customer/subsidiary field called 'Style'. This can be
achieved with a single form using the [@Variant] profile option.

The designer creates (say) 3 different variants of the pane - called 'OptionOne', 'OptionTwo', and
'OptionThree'. We add a field named, for example, 'Style' into the data file with a value of 'One', 'Two', or
'Three'. This appears in each <document> of the file. The data for the pane continues to exist in the data
stream under the name 'Detail'.

In the profile, the following appears:

[@Variant]
Detail = Option[Style]

Now when the data file is processed, the value of field 'Style' is appended to the string 'Option' to become
a name such as 'OptionTwo'. The resulting named object in the design is renamed to the name 'Detail'.
The resulting Merge of the data that follows then uses variant 'OptionTwo' of the pane.

Each <document> can have a different value for the field 'Style', and hence, generate a different variation of
the Detail row.

See Also

_profile _file.readPrmFile _file.readIniFile

Note - this is preceded by an '@' character, unlike the other profile options! (See Profile Files)

https://docs.docorigin.com/reference-manual/scripting/script-functions/_file-read-write-files#:~:text=of%203.0.003.13).-,_file.readPrmFile,-(fileName)

Merge | Transparent Color Image Support

page 301

•

•

•
•

•

•

•
•

•

Transparent Color Image Support
Select an image with a transparent background
Tip: Both sample images above contain a transparent background. To save the image, select the image and
press Ctrl+Shift+E. You will be prompted to save the image.
Add the following script to your image
this._transparent = true;

Set the Blend printer options
Using a form script
_printer.setOption('Blend', 'Normal');

Using a merge option (in your merge command or enter in your $U/Overrides/merge.prm)
-blend Normal

Setting in your Printer Configuration File (PRT)
<Blend>Normal</Blend>

Set the SupportAlpha printer options
Using a form script
_printer.setOption('SupportAlpha', 'Yes');

Setting in your Printer Configuration File (PRT)
<SupportAlpha>Yes</SupportAlpha>

Note: The Common Properties > Color > Transparent Background applies to the image label
object only, not the actual image itself.

MultiMerge | Transparent Color Image Support

page 302

MultiMerge
(As of 3.1.001.07)

MultiMerge is a Merge pre-processor that combines the output of separate Merge runs into a single output
file. At this time this program is used to create only Adaptive HTML output.

MultiMerge | Html-Adaptive Processing

page 303

Html-Adaptive Processing
The Html-Adaptive processing results in an html output that will present distinct browser layouts
depending on the width of the user's browser. It is typically used to allow mobile users a separate, more
vertical view, of a web page that might otherwise become too small on a phone display.

With the MultiMerge adaptive processing, the form designer must create separate form layouts for each
variation of the browser display they require. These can be in separate DocOrigin xatw files (one xatw file
for each view), or a single xatw where each page in the xatw represents a different view. Up to 10 distinct
views can be defined. In practice 2 or 3 are likely all that you will require.

Processing begins by MultiMerge internally invoking the DocOrigin Merge program separately for each of
the form files (or pages if there is only one form file specified). The command line -data, -config, -logfile and
-mergeargs are all passed to each of these Merge runs along with the individual form definition of a single
html "view". All Merge runs get the same options except for the -form option.

The output from these separate runs is then restructured into a single output html file (the -output arg).
This output file contains each of the distinct "views" together with some html logic that determines which
view should be displayed to the user.

MultiMerge | Html-Adaptive Template Files

page 304

Html-Adaptive Template Files
The creation of the combined output file is controlled by a MultiMerge Template file - an html file with
special Placeholder tags in it where the various pieces of information from the Merge runs are placed. For
example, the output of the first view is placed in the BODY1 placeholder, the second view in
the BODY2 placeholder, etc.

There are default files in the DocOrigin/DO/Bin folder that ship with DocOrigin. You can override these on
the MultiMerge command line with the -AdaptiveTemplate option.

The default templates are named Default-DOHtmlAdaptiveTemplate#.htm where '#' is the number of
views you specify in the -form argument. The most common template is Default-
DOHtmlAdaptiveTemplate2.htm. If you decide to customize this, just copy this default file. Give it a new
filename and store it in your overrides folder (DocOrigin/User/Overrides/).

MultiMerge | MultiPart Output

page 305

MultiPart Output
MultiMerge also enables the generation of traditional multi-part documents. These are documents where 2
or more variants of the same document are created from a single set of data.

For MultiPart processing, the form designer must create separate form layouts for each "part" of the
document they require. These can be in separate DocOrigin xatw files (one xatw file for each "part"), or a
single xatw where each page in the xatw represents a different "part".

MultiPart processing internally invokes DocOrigin Merge separately for each of the form files (or pages if
there is only one form file specified). The command line -data, -config, -logfile and -mergeargs are all
passed to each of these Merge runs along with the individual form definition of a single html "view". All
Merge runs get the same options except for the -form option. The result of these separate Merge runs is
then combined to create a series of multi-part documents written to the "-output" file name.

The specific type of output - PDF, PCL, Postscript - must be specified using the -action command line
argument. See the Command Options to the left.

See Also

MultiMerge Command Options

MultiMerge | MultiMerge Command Options

page 306

•
•
•
•
•

MultiMerge Command Options
MultiMerge has the standard DocOrigin command line options as described in the Common Command
Line Options section of this document. In particular, it requires that -logfile and -message be defined
either explicitly or in one of the default prm files.

The basic MultiMerge commands are similar to that of Merge. These work the same as they do in Merge -
see Merge Command Options for details.

-config filename (defaults to DefaultHTM.prt)
-data filename (required)
-form formfile/formfilelist (required)
-logfile filename (required)
-output filename (required)

In addition, there are some MultiMerge-specific command options listed at the left.

MultiMerge | MultiMerge Command Options

page 307

•

•

•

•

-action
Type of MultiMerge action to perform.

Syntax
-action actionType

The default actionType is html-adaptive

Description
Available actionTypes:

-action html-adaptive

This create Adaptive Html output.

-action pdf-multipart

Create a multi-part document with PDF output.

-action pcl-multipart

Create a multi-part document with PCL (HP Laserjet) output.

-action ps2-multipart

Create a multi-part document with Postscript output.

See Also

Command Line Processing MultiMerge Command Options

MultiMerge | MultiMerge Command Options

page 308

-adaptiveTemplate
Template used to create final output file of MultiMerge.

Syntax
-adaptiveTemplate filename

The default template is either one provided in the DocOrigin install or defined in your Overrides folder.

See Html-Adaptive Processing for details.

Description
This allows you to override the standard template used by MultiMerge.

See Also

Command Line Processing MultiMerge Command Options

MultiMerge | MultiMerge Command Options

page 309

-mergeargs
Additional parameters passed to Merge calls

Syntax
-mergeargs args

Description
This command allows the specification of any of the standard Merge args to be passed to each invocation
of Merge from within MultiMerge.

The -config, -data, -form, -logfile, -output and -trace options do not need to be included in this
list - they are set as normal MultiMerge command options and passed to Merge as required. You need only
use -mergeargs if there are non-standard options to be sent to Merge.

See Also

Command Line Processing MultiMerge Command Options

MultiPage | Usage

page 310

•
•
•
•

MultiPage
(As of 3.2.001.01)

The MultiPage feature lets you output two or more logical PDF pages on a single physical PDF page.

Usage

MultiPage -in DocOrigin.pdf -out MultiPage.pdf [-ini MultiPage.ini]

There is Default-MultiPage.ini in the DocOrigin/DO/Bin folder. Please study this .ini file as it contains a
lot of valuable information.

Before using MultiPage, you must define mandatory settings either in $O/MultiPage.ini or in the custom
MultiPage .ini file which can be passed to MultiPage via ini command line parameter.

There are several MultiPage*.ini examples in the DocOrigin DO/Samples folder.

You will find that you may choose from three "pre-configured" page sizes for the output (Letter, Legal, and
A4).

The mandatory settings in the .ini are

TargetPageSize=Letter|Legal|A4
TargetOrientation=Portrait|Landscape
GridCellsInX=Number of pages across
GridCellsInY=Number of pages down

You can also choose to have a border drawn around the original pages. To do this, set the [Border] style,
line type, line color, line thickness, and line inset accordingly.

You can generate MultiPage output directly from Merge by using Merge's run:: option in the -output
argument, e.g.

-output "run::MultiPage -in %t -out MultiPage.pdf -ini MultiPage_A4_Portrait_2x2.ini"

MultiPage only works with DocOrigin-generated PDF files!!!

MultiPage | MultiPage Command Options

page 311

•
•
•

MultiPage Command Options
MultiPage has the standard DocOrigin command line options as described in the Common Command Line
Options section of this document. In particular, it requires that -logfile and -message be defined either
explicitly or in one of the default prm files.

-in filename (required, DocOrigin generated input pdf)
-out filename (required, MultiPage output pdf)
-ini filename (optional, custom MultiPage spec which overrides Default-MultiPage.ini and $O/MultiPage.ini)

Notify | MultiPage Command Options

page 312

Notify
(As of 3.0.003.13, Windows-only)

DocOriginNotify is a standalone feature that facilitates watching for the existence of certain files.

Once run, it will continue to monitor for the existence of files matching the file mask you have specified
and will popup a "toast" message should any such files be detected. At any point you can view a list of the
detected files and perform operations on each file; operations defined by you for a typical right-mouse-
click context menu.

You may run multiple instances of DocOriginNotify, each specifying a different file mask to monitor.

Each instance of DocOriginNotify will have an icon in the Windows "systray". [Well, that's the old term, that I
think most of us still recognize.]

Notify | Purpose/Uses

page 313

Purpose/Uses
Jobs that are run via DocOriginFolderMonitor can direct their output to various locations. One such
possibility is to direct output to a folder assigned to the intended recipient. These jobs may have been
submitted by other people or directly from an ERP or CRM or some LOB application. If the recipient is
running DocOriginNotify they can be alerted whenever output arrives in their folder, or perhaps even a
folder assigned to a group of individuals. If the files being detected are the results of fillable form
production or some other "task description" the perception of these monitored files as "completed output"
or "work item" is in the eye of the beholder.

Under error conditions, output (or failed input) may be directed to certain system folders. By monitoring
such folders an interested party can be warned of such happenings.

Notify | Infrastructure

page 314

Infrastructure
The usual scenario is that of a DocOrigin server, and several client machines busily engaging in the overall
company business. Jobs are sent to the DocOrigin server and output is produced.

DocOriginNotify is unusual in that it is often meant to be deployed on a client system, away from the
DocOrgin server, on a system with no other DocOrigin software on it. Of course, DocOrigin can be used
directly on the DocOrigin server as well, but that may not be its primary usage point.

At this time, there is no client install for DocOriginNotify. However, it requires very little. Simply extract the
DocOriginNotify_x32.zip archive from the server's .../DO/Bin folder to some convenient location on each
client machine whose user wishes to run DocOriginNotify. Note, that archived executable is 32bit so you
may run it on older 32bit systems. It may requite you to install "Visual C++ redistributable 2017" on a client
machine, same thing you do when installing DocOrigin.

Notify | Configuring

page 315

Configuring
When a user runs DocOriginNotify, they specify either a series of command line options and/or, much
more likely, they specify the name of a .prm file that is a modified clone of the delivered
DocOriginNotify.prm file. That file has copious comments within it to describe the options that are
available.

Principle among those options is: -fileMask

That is a fully path-qualified file name mask which this instance of DocOriginNotify is meant to monitor. At
present, these paths must be accessible, network-mounted folders.

See Also

The DocOriginNotify.prm file.

Notify | Command Options - Notify

page 316

Command Options - Notify
Notify uses the standard DocOrigin command line option handling as described in Common Command
Line Options.

Notify | Command Options - Notify

page 317

-context (Notify Command Option)
Define a context menu to present when an identified file is right-clicked.

Syntax
-context# name, command

Description
This allows you to define a context menu to be presented when an item identified by the -fileMask is
right-clicked on. -context1 is very special as that also defines the action to be taken when the item is
simply double-clicked. Each -contextn item is defined in terms of a Windows command. As per the
exemplar DocOriginNotify.prm file, the typical -context1 context operation is to simply "Windows start"
the file and let the program associated with the file's extension be run.

A 'delete the file' context item may be useful too so as to readily "be done with a task that you have
completed".

As per the exemplar, it is useful to call command prompt files (.bat) so that the processing associated with
a context item can be more readily tailored as ongoing needs change.

See Also

Command Line Processing Command Options - Notify

Notify | Command Options - Notify

page 318

-fileMask (Notify Command Option)
File to look for.

Syntax
-fileMask mask

Description
A wildcard file mask such as -fileMask $U/Output/*.pdf that indicates which files to scan for.

See Also

Command Line Processing Command Options - Notify

Notify | Command Options - Notify

page 319

-themeColor (Notify Command Option)
Display color.

Syntax
-themeColor color

Description
By default, the toast comes up in a "bluish" color. If you have multiple DocOriginNotify instances running,
you may wish to specify a different theme color so that you can recognize instantly just "which toast
popped".

Color is specified using the standard DocOrigin color specifications - see Colors.

See Also

Command Line Processing Command Options - Notify

Notify | Command Options - Notify

page 320

-waitTime (Notify Command Option)
Time, in seconds, to wait between checking to see if more files have arrived.

Syntax
-waitTime seconds

Description
Time, in seconds, to wait between checking to see if more files have arrived.

See Also

Command Line Processing Command Options - Notify

PCLExtract | Extracting Documents from a PCL

page 321

PCLExtract
PCLExtract is a standalone tool to allow the extraction of documents from a DocOrigin PCL file.

Extracting Documents from a PCL
Given a hypothetical multi-document PCL named multiDoc.pcl you could extract document 7 from it by
using:

DO PCLExtract -in multiDoc.pcl -docs 7 -out justDoc7.pcl

Rather than extracting only a single document, you could extract a comma-separated list of documents
(e.g. -docs "2,5,18,19,34"). You can also specify a dash-separated range of document numbers. (e.g.
 -docs "1,20-30,18"). Or extract by document bookmarks (e.g. Name=Fred or CustomerID=123,124,125).

Other options
PCLExtract contains a set of other options to work with PCL file. For instance: extract input data, count
documents, etc.

Hint: If you ever want to know the syntax for PCLExtract, just run it with no arguments.

PDFExtract | Other options

page 322

PDFExtract
PDFExtract is a standalone tool to allow the extraction of pages or documents from a DocOrigin
"combined PDF", or to combine multiple documents from multiple PDFs into one PDF.

PDFExtract | Combined PDFs

page 323

Combined PDFs
Merge very often deals with data streams that have multiple documents' worth of data in them. Merge can
produce an individual PDF for each document (record, transaction) in the data, and/or it can produce a
'combined PDF' of multiple documents into a single PDF. The latter is often used for archiving, for sending
out to a print service bureau, or with bookmarks for looking up documents.

A combined PDF is produced by using the -PDFCombineDocuments Yes directive. That is in fact the default
setting in the Default-PDF.prt configuration file.

So now you could have PDFs with lots of documents in them. DocOrigin encodes special markers and a
special index section in its PDFs. These markers allow PDFExtract to know where the document boundaries
are and, with the document index, is able to have direct access to any given document.
This is quite different from other PDF software where all you have is a great number of pages with no built-
in understanding of which pages belong to which document.

PDFExtract | Combining PDFs using PDFExtract

page 324

Combining PDFs using PDFExtract
Another way to get a 'combined PDF', i.e. a multi-document PDF, is to use PDFExtract in the following
manner.

DO PDFExtract -in file1.pdf -in file2.pdf -out output.pdf

You can specify as many input PDF files as you like and they will all be combined into a single output PDF.
Perhaps you would want to combine a 'Statement' and an invoice. Recall that DocOrigin JavaScript (in the
form, or in a Job Processing script, or even standalone via RunScript) can use its _run function to run any
application. A script could easily be crafted to run PDFExtract so as to combine PDF documents on the fly,
and under scripting logic control.

PDFExtract operates on only DocOrigin-produced PDF files.

PDFExtract | Extracting Documents from a PDF

page 325

Extracting Documents from a PDF

Given a hypothetical combined PDF named multiDoc.pdf, you could extract document 7 from it by using:

DO PDFExtract -in multiDoc.pdf -docs 7 -out justDoc7.pdf

Rather than extracting only a single document, you could extract a comma-separated list of documents
(e.g. -docs "2,5,18,19,34"). You can also specify a dash-separated range of document numbers. (e.g.
 -docs "1,20-30,18")

Hint: If you ever want to know the syntax for PDFExtract, just run it with no arguments.
DO PDFExtract

PDFExtract | Extracting Pages from a PDF

page 326

Extracting Pages from a PDF
Extracting pages is identical to the above but with -pages used instead of -docs.

This is not meant to be page numbers within a document but pages in the entire multi-document PDF
starting at 1 and going up to however far it goes. You can get the number of pages in a PDF via:

DO PDFExtract -in multiDoc.pdf -pagecount Y

The selections done by -docs and -pages are totally independent. They are not an intersection of those
criteria, nor a union of them. If those selections happened to overlap then such objects selected would
come out twice. It is not recommended that you mix then.

PDFExtract | Selection by Bookmark

page 327

Selection by Bookmark
When creating a multi-document PDF you will often specify bookmarks that are to be inserted into the
PDF. See _document.bookmark Using that script function in your forms when you create the combined
PDF, you can insert bookmarks of chosen names and values as applicable. Then, rather than having to
know the ordinal number of a document you could select/extract by bookmark value.

DO PDFExtract -in multiDoc.pdf -docs "SalesRep=Sam"

PDFExtract | View Bookmarks

page 328

View Bookmarks
You can get a very simple, but therefore easily able to be processed via script, list of all the bookmarks in a
PDF by using:

DO PDFExtract -in multiDoc.pdf -dumpIndex -quiet > bookmarks.txt

or

DO PDFExtract -in multiDoc.pdf -dumpIndex -out bookmarks.txt

You would likely then use a simple script to read that output file and take whatever actions you desired to
take. Do look at the Sample_Extract sample that is provided in the installation.

DO sample 2

PDFExtract | Command Options (PDFExtract)

page 329

Command Options (PDFExtract)
PDFExtract uses the standard DocOrigin command line option handling as described in Common
Command Line Options.

PDFExtract | Command Options (PDFExtract)

page 330

-attach
Add an attachment to the PDF.

Syntax
-attach filename [;description]

Parameters
filename is the file to attach.

description can be any text. It will be shown in PDF viewer as the description for the attachment file.

Description
This option can be specified multiple times to PDFExtract so you can attach more than one file. You can
attach any file, a typical example might be of a spreadsheet or some background document.

See Also

Command Line Processing

PDFExtract | Command Options (PDFExtract)

page 331

-docs
Select specific DocOrigin documents from the source PDF.

Syntax
-docs name=value

-docs docNumber [,docNumber [,docNumber ...]]

Parameters
name=value command option specifies a name/value pair as defined by these bookmark features.

docNumber [,docNumber [,docNumber ...]], - Alternately you can specify the document as a list of
document numbers - 1,2,6,10... etc.

Description
Use the -docs option to select one or more DocOrigin documents from within a multi-document PDF
generated by the Merge -combineDocuments option.

Documents are added to DocOrigin pdf files using the Bookmark feature - see _document.bookmark

See Also

Command Line Processing Command Options (PDFExtract) View Bookmarks

PDFExtract | Command Options (PDFExtract)

page 332

-dumpIndex
Extract the DocOrigin Bookmark name/value table.

Syntax
-dumpIndex Y/N

Description
When DocOrigin generates a PDF it adds a special Bookmark index to the file. See _document.bookmark.
This option extracts that index to the output file.

See Also

Command Line Processing Command Options (PDFExtract)

PDFExtract | Command Options (PDFExtract)

page 333

-dumpObjects
Dump the internal PDF objects to a series of text files.

Syntax
-dumpObjects Y/N

Description
This option extracts all internal PDF objects into a series of .txt files. Each PDF object is written to its own
file.

See Also

Command Line Processing Command Options (PDFExtract)

PDFExtract | Command Options (PDFExtract)

page 334

-in
Defines the input PDF file to process.

Syntax
-in filename

Description
This is the base file that PDFExtract works on.

See Also

Command Line Processing Command Options (PDFExtract)

PDFExtract | Command Options (PDFExtract)

page 335

-multiSelect
Select all matching documents with the PDF.

Syntax
-multiSelect Y/N

Description
When the -docs option is being used to select documents by name/value it is possible that more than one
document within the PDF matches the criteria. multiSelect determines whether to extract only the first
one or all matches.

See Also

Command Line Processing Command Options (PDFExtract)

PDFExtract | Command Options (PDFExtract)

page 336

-onto
Defines one or more destination pages onto which the -overlay pages are overlaid.

Syntax
-onto page#

See Also

Command Line Processing Command Options (PDFExtract)

PDFExtract | Command Options (PDFExtract)

page 337

-out
Output file for PDFExtract.

Syntax
-out filename

Description
The name of the file to be created by PDFExtract.

See Also

Command Line Processing Command Options (PDFExtract)

PDFExtract | Command Options (PDFExtract)

page 338

-overlay
Overlay another PDF over selected pages in the PDF.

Syntax
-overlay filename

Description
The pages of this file will be combined (overlaid) onto the source (-in) file. The -onto option can be used to
specify which input pages to be overlaid.

See Also

Command Line Processing Command Options (PDFExtract)

PDFExtract | Command Options (PDFExtract)

page 339

-pageCount
Count the pages in this PDF.

Syntax
-pageCount Y/N

See Also

Command Line Processing Command Options (PDFExtract)

PDFExtract | Command Options (PDFExtract)

page 340

-pages
Select specific pages from the input PDF.

Syntax
-pages page# [,page# [,page# ...]]

Description
Extract these specific PDF pages from the file. You can specify a list of page numbers or a range such as
11-15 or combinations of the two.

See Also

Command Line Processing Command Options (PDFExtract)

PDFExtract | Command Options (PDFExtract)

page 341

-quiet
Suppress information messages to the console.

Syntax
-quiet Y/N

See Also

Command Line Processing Command Options (PDFExtract)

RunScript | Syntax

page 342

RunScript
RunScript is a tool to run JavaScript scripts. It executes the JavaScript script that is provided in fileName.

Syntax
RunScript -script fileName

Parameters
fileName is the file to run such as a WJS.

The script files, by convention, almost always have an extension of .wjs. The script files must be saved in
UTF-8 format.

RunScript can be used to develop and test scripts that may eventually be part of one of the other DocOrigin
applications. Or it may be used as a standalone application to carry out virtually any activity.

Since RunScript can invoke other applications via its _run object, it can be used to orchestrate business
processes involving many steps. Note that RunScript can even invoke other instances of itself such that
processing steps can be broken down into parts and then have a master script that runs each part, or runs
each part conditionally. We find that technique particularly handy for running a suite of tests.

RunScript includes all of the DocOrigin features described below in Common DocOrigin Script Functions.

RunScript | Predefined Vars

page 343

Predefined Vars
When RunScript executes, all the $X settings that are defined either explicitly or by default on the
command line are made available as pre-defined javascript variables. (All DocOrigin programs
automatically include the Default-DocOrigin.prt). So, for example:

var fn = $E + "/Default-DocOrigin.prm";
_message("fn=%s", fn); // displays "fn=c:/DocOrigin/DO/Bin/Default-DocOrigin.prm"

All the parameters set on the command line of RunScript are also available within the script as the
javascript object _job.command. So for example:

_printf("script=%s", _job.command.script); // will display -script setting

RunScript allows you to set any command line options of your own. Consider the following file
"myscript.wjs" contains

_printf("mydata=%s", _job.command.mydata); // display command option -mydata

Running RunScript -script myscript.wjs -mydata=Fred.txt
will print "mydata=Fred.txt".

RunScript | Command Options (RunScript)

page 344

Command Options (RunScript)
RunScript has the standard DocOrigin command line options as described in the

Common Command Line Options section of this document.

In particular, it requires that -logfile and -message be defined either explicitly or in one of the default prm
files.

You may also define any command line options of your own and retrieve their value within a script. For
Example:

RunScript -script yourscript.wjs -file yourfilename.txt

Within your script, you can fetch the value of -file using

var file = _job.command.file; // set to "yourfilename.txt"

RunScript | Command Options (RunScript)

page 345

-allowDJScript
Use the built-in DocOrigin script processor.

Syntax
-allowDJScript Y/N

Description
By default RunScript always uses the ECMA SpiderMonkey script engine. By setting -allowDJScript Y you
can request that the optimized DocOrigin script engine be used instead. The DJ script engine is faster but
does not support some of the less frequently used javascript features. If the DJ script engine does not
recognize any javascript feature you may have used, RunScript will automatically revert to the more
complete (but slower) SpiderMonkey processing.

See Also

Command Line Processing

RunScript | Command Options (RunScript)

page 346

Runscript -script
[Mandatory] Specify the javascript file to execute.

Syntax
-script filename

Description
This tells RunScript where to find your javascript to be executed.

See Also

Command Line Processing RunScript Command Options

FormConvert | Command Options (RunScript)

page 347

FormConvert
DocOrigin supplies a non-GUI program called "FormConvert" which can be used to convert IFD, XDP, or
PDF files to XATW format. The same prerequisites apply for batch conversion as for conversion using
DocOrigin Design, see Form File Import/Conversion

FormConvert | Command Options (FormConvert)

page 348

Command Options (FormConvert)
The FormConvert command line options are simple:

FormConvert -in xxx.<ifd|xdp|pdf> [-out xxx.xatw] [-saveXdp xxx.xdp]

If you do not supply a -out then it will use the same base name as the input file. When converting ifd or pdf
it can be useful to save intermidiate xdp with -saveXdp option, see also DO_SAVE_XDP.

FormConvert | Command Options (FormConvert)

page 349

-adjustLabelWidth
Adjust text label width during conversion.

Syntax
-adjustLabelWidth value

Description
Sometimes you may need to adjust text label width after conversion, e.g. to make it slightly bigger to avoid
extra line wrap. This can be automated with this option.

The parameter's value can be a number (then it means microns) or a number with a suffix (in, cm, mm, pt).
It can be both positive and negative. If you want to use negative then use -parm=value syntax, so minus will
not be treated as a start of a new option, e.g.

-adjustLabelWidth=200

-adjustLabelWidth=-200

-adjustLabelWidth=0.01in

-adjustLabelWidth=-0.01in

See Also

Form File Import/Conversion Eclipse Form Conversion Service (EFCS)

https://docs-admin.docorigin.com/pages/viewpage.action?pageId=16089212

FormConvert | Command Options (FormConvert)

page 350

-config (FormConvert)
Option to specify DocOrigin configuration file used by FormConvert at XDP to XATW conversion step.

Syntax
-config prt

Description
Output configuration file (.prt) specifies information such as available fonts, page sizes, etc. Default
configuration is "$R/DO/Config/Default-PDF.prt".

See Also

-setConfig

FormConvert | Command Options (FormConvert)

page 351

-containerShift
Option to set left and right shift of container border in the converted form.

Syntax
-containerShift ...

Description
When converting forms before 3.2.001.02, DocOrigin tried to introduce 0.25in container shift if possible
(recalculating the position of nested elements). As of 3.2.001.02, elements use original positions delegating
all the required adjustments to the form designer.

If you still want DocOrigin to shift the container's borders you can configure it using -ContainerShift
option. When set, FormConvert will attempt to shift the container border from the page border.

Parameter value should be in DocOrigin units - microns, in, cm, mm, pt. Default is 0.

See Also

Form File Import/Conversion

FormConvert | Command Options (FormConvert)

page 352

-fieldCorrection
The option controls global field synchronization used by ConvertIFDShell at IFD to XDP conversion step.

Syntax
-fieldCorrection global/once

Description
This is ConvertIFDShell parameter "fieldCorrection" with value either "global" or "once". If the value is
"global", it specifies that fields with the same names should be global. The default value is "once".

See Also

Form File Import/Conversion

FormConvert | Command Options (FormConvert)

page 353

-ics
Option to specify Output Designer configuration file used by ConvertIFDShell at IFD to XDP conversion step.
Same as -target.

Syntax
-ics path

Description
Output Designer configuration file (.ics) specifies information about available fonts. Default configuration is
"pdf.ics".

See Also

Form File Import/Conversion -target

FormConvert | Command Options (FormConvert)

page 354

-importFilter
Option to control subforms import used by ConvertIFDShell at IFD to XDP conversion step.

Syntax
-importFilter fieldsOnly|none

Description
ConvertIFDShell parameter "importFilter" with value either "none" or "fieldsOnly". If value is "fieldsOnly"
then all un-named subforms are removed from the hierarchy. Default value is "none".

See Also

Form File Import/Conversion

FormConvert | Command Options (FormConvert)

page 355

-in (FormConvert)
Option to specify FormConvert input file.

Syntax
-in path

Description
Input file can be either Adobe Output Designer Form (.ifd), or Adobe PDF (.pdf), or Adobe XML Form (.xdp).

See Also

Form File Import/Conversion

FormConvert | Command Options (FormConvert)

page 356

-out (FormConvert)

Syntax
-out path

Description
Output file is resultant DocOrigin Form (.xatw).

See Also

Form File Import/Conversion

FormConvert | Command Options (FormConvert)

page 357

-retainSpaces
Control spaces compression in the text labels during conversion.

Syntax
-retainSpaces Yes/No

Description
This is an option to control the compression of multiple spaces in a row to a single space for text labels.
Sometimes, source forms could use spaces for text alignment, and therefore it may be handy to keep them
after conversion.

Default is No, i.e. multiple spaces are replaced with a single space.

See Also

Form File Import/Conversion Eclipse Form Conversion Service (EFCS)

https://docs-admin.docorigin.com/pages/viewpage.action?pageId=16089212

FormConvert | Command Options (FormConvert)

page 358

-saveXdp
Option to specify output for intermediate Adobe XML Form file.

Syntax
-saveXdp path

Description
This option is useful for debugging purposes to analyze intermediate Adobe XML Form file produced by
ConvertIFDShell at IFD to XDP conversion step, or ConvertPDF at PDF to XDP conversion step.

See Also

Form File Import/Conversion

FormConvert | Command Options (FormConvert)

page 359

-setConfig
Option to specify that configuration file name (file name only) should be stored in the resultant DocOrigin
Form (.xatw).

Syntax
-setConfig Yes/No

Description
If value is "Yes", then the name of DocOrigin configuration file used for conversion is stored in the resultant
DocOrigin Form (.xatw) as this form configuration file. Default value is No.

See Also

Form File Import/Conversion

FormConvert | Command Options (FormConvert)

page 360

-target
Option to specify Output Designer configuration file used by ConvertIFDShell at IFD to XDP conversion step.
Same as -ics.

Syntax
-target path

Description
Output Designer configuration file (.ics) specifies information about available fonts. Default configuration is
"pdf.ics".

See Also

Form File Import/Conversion

SendMail | Command Options (FormConvert)

page 361

•

•

•

•

SendMail
DocOrigin supports the sending of emails through two main mechanisms:

Using a Form Template (_email_5 for instance) that lays out the email header information as well as the actual
email message body directly within Design. This is covered in more detail in the Auto Email section.
Using the JavaScript _sendmail function to send emails. This can be used in all DocOrigin script-enabled
functions

Merge, RunScript, FolderMonitor, etc.

Both schemes use the same underlying DocOriginSendMailServer program to send the actual messages.

The DocOrigin SendMail system relies on the use of the cURL external executable to interface with an
email server (via SMTP) and send the actual messages. This package is provided in the DocOrigin Install for
the Windows environment and is freely available online for other platforms.

SendMail must be configured via an overrideable DocOriginSendMailServer.prm file or via command line
parameters (as of 3.2.001.01). Your SMTP host, access user/passwords, port number, and default "from"
address must be configured in order for sendmail to work.

When _sendmail is called you can specify whether the message is to be sent immediately or whether it can
be queued to send later. This option is part of the _sendmail function parameter settings. This is typically
adjusted for performance reasons in certain email environments.

When messages are queued for sending, a second program called DocOriginSendMailServer is
automatically run to process these message files and do the actual email transmission via an SMTP email
server. The queue option results in much better overall email throughput.

See the _sendmail function description for more details on using the JavaScript _sendmail function and
Auto Email for details on embedding automatic emailing into your DocOrigin Design.

DocOrigin supports the sending of emails through two main mechanisms:

Using a Form Template (_email_5 for instance) that lays out the email header information as well as the actual
email message body directly within Design. This is covered in more detail in the Auto Email section.
Using the JavaScript _sendmail function to send emails. This can be used in all DocOrigin script-enabled
functions

Merge, RunScript, FolderMonitor, etc.

Both schemes use the same underlying DocOriginSendMailServer program to send the actual messages.

The DocOrigin SendMail system relies on the use of the cURL external executable to interface with an
email server (via SMTP) and send the actual messages. This package is provided in the DocOrigin Install for
the Windows environment and is freely available online for other platforms.

SendMail must be configured via an overrideable DocOriginSendMailServer.prm file or via command line
parameters (as of 3.2.001.01). Your SMTP host, access user/passwords, port number, and default "from"
address must be configured in order for sendmail to work.

SendMail | Command Options (FormConvert)

page 362

When _sendmail is called you can specify whether the message is to be sent immediately or whether it can
be queued to send later. This option is part of the _sendmail function parameter settings. This is typically
adjusted for performance reasons in certain email environments.

When messages are queued for sending, a second program called DocOriginSendMailServer is
automatically run to process these message files and do the actual email transmission via an SMTP email
server. The queue option results in much better overall email throughput.

See the _sendmail function description for more details on using the JavaScript _sendmail function and
Auto Email for details on embedding automatic emailing into your DocOrigin Design.

SendMail | SendMail Configuration

page 363

•
•
•
•

SendMail Configuration
SendMail must be specifically configured for each user environment. The default settings are defined in the
DefaultDocOriginSendMailServer.prm. (Note that despite the "Server" at the end of this file name, the
settings are in fact for both the immediate sending of emails and the queued sending of emails.) This
default file is supplied with your installation. To make changes you should make a copy of any required
sections of the file and store it in your .../User/Overrides folder under the name
DocOriginSendMailServer.prm. This new file is automatically referenced after DocOrigin reads Default-
DocOriginSendMailServer.prm. You can make any changes you like to the version of the file in .../User/
Overrides - they will override the Default version of the file.

The DocOriginSendMailServer.prm file is a text file and contains vital internal comments as to what each
of the settings is for. You will, at the very least, need to change the following:

-smtphost to be your email server
-smtpuser and -smtppassword to your account
and possibly -smtpport if your email server uses a different port number.
You should also modify the -from the default setting to be one of your email accounts. The -from can also be set
explicitly on each call to _sendmail.

Alternatively (as of 3.2.001.01), for more flexibility, you may specify command-line parameters which will
override settings found in prm file.

DocOriginSendMailServer will take the information found in the message scan folder, typically .../User/
Outbox, establish a connection to your specified SMTP server, and send the message. Upon completion,
the message files are deleted or moved per your configuration settings. When DocOriginSendMailServer
has processed all messages from the scan folder it shuts down.

Immediate or Queued
Email may be sent either 'immediately' or 'queued'. Sending email immediately is rather slow since a
connection to the email server needs to be made and the calling script must then wait until the mail is
actually sent. For this reason, it is often preferred to send email in a queued fashion. This puts the needed
files in a folder, usually .../User/Outbox, and a separate program is launched to look after the sending of
the email (or possibly many emails); meanwhile, the calling script will carry on processing with no waiting.

The folder where queued emails are put is defined by the -mailscanfolder option as specified in the
DocOriginSendMailServer.prm override file. Typically it is .../User/Outbox.

You specify your wish to send emails immediately via a -sendmail immediate directive. More likely, for
performance reasons, you would specify -sendmail queue in order to queue the sending of email while
your script carries on processing. These options can also be specified on a per email basis by supplying
the .queue property as true or false in your _sendmail function call.

var args = {};
args.To = ...
args.Subject = ...

SendMail | SendMail Configuration

page 364

args.etcetera ...
args.queue = false; // Send this email immediately, I'm willing to wait
_sendmail(args);

Similarly, with the Auto Email system, set the Mail Options to either queue:Y or queue:N.

Messages that are sent immediately are processed by the _sendmail function itself. No scanning of folders
is involved. _sendmail launches cURL on its own, waits for it to complete, and then does the necessary
housekeeping.

Messages that are queued, are put, by _sendmail, into the .../User/Outbox folder. There is a pair of files.
One has a .eml extension and contains the entire email package including any attachments. The other file
has a .scan extension and contains the instructions for cURL to use. Once the files are placed in that folder,
_sendmail will launch DocOriginSendMailServer so that it can process any messages that are in the
nominated scan folder, while the script that called _sendmail continues on without waiting.
DocOriginSendMailServer scans the folder for *.scan files and processes each email accordingly.

Aside: As it happens, emails sent immediately do also put a pair of files in the Outbox. One is the
usual .eml file and one has a .config extension. DocOriginSendMailServer never sees those files. _sendmail
handles them directly by using cURL on them itself.

Creating but not Sending and Email (-hold)
You can tell the email system to hold an email and not send it automatically at all using the -hold options
(arg.hold = true; in script, or Mail Options of hold:Y for the Auto Email feature) This causes the .eml file
and an associated .scan file to be placed in a separate /Outbox/Hold subfolder. This can be handy if you
are testing a form or script and you don't want to actually send it - just look at it. If you have a desktop
email client (such as Outlook) you can double-click on the .eml file and see the email as it would be
displayed if it had been sent.

If you move the .eml file and its associated .scan file back to the parent Outbox folder, it will then be sent
the next time DocOriginSendMailServer is run. (It requires no parameters, so it is easy to run!)

Post-Send Housekeeping
If the transmission of a message is not possible due to some parameter error or email system error, the
pair of files is (as of 3.0.003.24) moved to the subfolder as defined via the -mailErrorFolder directive in your
DocOriginSendMailServer.prm file. The default is to go a sub-folder named Error. This folder will be
immediately under the scanned folder, hence it is typically .../User/Outbox/Error. Prior to 3.0.003.24,
the .scan (or .config) file would've been left in place but renamed to have a .ERR extension.

If the email send is successful then the pair of files will either be deleted or renamed/moved. Normally they
would be deleted. This is controlled by the -keep option in the DocOriginSendMailServer.prm file. If
-keep is not specified, it is assumed to have the value No and hence the successfully sent email files will be
deleted. If you are not queuing the emails (i.e. args.queue = false this can also be controlled on a per
_sendmail (or Auto Email) basis by specifying the .keep property as either true or false.

SendMail | SendMail Configuration

page 365

If you do choose to keep the files even after a successful send... before 3.0.003.24, the .scan file would've
remained in place but be renamed to have a .DONE extension. As of 3.0.003.24, the pair of files would be
moved to the subfolder identified by your -mailSentFolder option. By default, that has the value Sent
and hence the files are moved to folder ../User/Outbox/Sent.

During initial development, it may be useful to specify -keep Yes in order to look at the email files that
were produced. However, if you do so, do remember to empty out that folder from time to time as folders
with many many files can slow the system down. The folder name specification can have the usual date
substitution % variables in it (e.g. %U is replaced with the current week number). In that way, multiple "Sent"
folders can be created each covering a certain period of time. See File Naming Conventions for file/folder
name syntax.

Prior to 3.0.003.24, if DocOriginSendMailServer encounters a timeout from the SMTP server, (either it's not
available or may be overloaded), the message remains in the scan folder and DocOriginSendMailServer will
attempt to resend it at a later time. The -pause setting below can be used to control when this resend is
attempted.

As of 3.0.003.24, cURL is directed to retry the send -retry times. If it fails, the files are copied to the
-mailErrorFolder folder.

Parallel Connections
Prior to 3.0.003.24, many instances of DocOriginSendMailServer may have been running simultaneously.
However, their invocation of cURL resulted in only a single connection to the email server being made.
Other overheads were encountered as well.

As of 3.0.003.24, only one instance of DocOriginSendMailServer is allowed to run. If _sendmail launches a
second instance, that second instance will detect the first instance and simply exit. The one instance of
DocOriginSendMailServer scans the outbox folder for .scan files and will launch up to -maxProcesses
instances of cURL in parallel to process the messages. If the software generating the emails gets ahead of
DocOriginSendMailServer, the latter will find many email messages to send but will process them in a
parallel fashion. There is a hard limit of 64 simultaneous connections, though your email server may have a
lower limit.

As always, DocOriginSendMailServer exits when it finds no further email messages to send (i.e. no
more .scan files). _sendmail launches DocOriginSendMailServer only after it has created the pair of files
(.eml, .scan) in the outbox folder.

Option List
The following command line parameters control the DocOriginSendMailServer process. There is a Default-
DocOriginSendMailServer.prm file located in the DO/Bin folder of your install. This prm file will
automatically be loaded when DocOriginSendMailServer starts running. It is also loaded by any call to
_sendmail. There are some default settings that come with your installation. You must make a copy of this
file and place it in the .../User/Overrides folder under the name DocOriginSendMailServer.prm – do
notice the dropping of the Default- prefix. This becomes your custom settings file. Put any overrides to the

SendMail | SendMail Configuration

page 366

default settings in this Overrides file (if one exists, be sure to remove the @@ reference at the bottom of the
copied file).

The following parameters are in addition to those listed in the _sendmail() function description and are
specific to the Windows platform. Fields marked as MANDATORY must be defined either in the default
parameter file or passed via a _sendmail() args setting or via an included parameter file.

Setting Description

-checkAddress Yes/No Do basic email address format validation.

-encode password If DocOriginSendMailServer is run with this as its only command line
parameter, (not from the prm file), an encrypted version of the supplied
password is displayed. You can use this in conjunction with the smtppassword
setting below to hide the true user password.

-from emailAddress The default "from" address to be used. The smtp server may require that this
be a valid address for your email server. This setting can be overridden in the
_sendmail() function. Using Microsoft Exchange? See the note in Sending
Mail.

-header header record Add this additional header to all emails sent. This setting can be overridden
in the _sendmail() function.

-logfile filename Standard DocOrigin logfile entries will be written to this file. We think it is a
good idea to nominate a specific logfile for DocOriginSendMailServer log
messages, rather than use the omnibus, ad hoc, $L/DocOrigin.log. You
probably won't want your DocOriginSendMailServer log messages
interleaved with other simultaneously running processes. MANDATORY

-message filename Standard DocOrigin error message file. MANDATORY, but automatically
supplied in the DefaultDocOrigin.prm file.

-mailscanfolder
fileFolder

This is the name of a folder where the messages are stored by calls to
_sendmail() in Merge etc.
MANDATORY

-pause seconds This causes the DocOriginSendMailServer to wait a few seconds before trying
to resend messages that have failed to send because of an smtp timeout.
The default is 60 seconds. (Obsolete as of 3.0.003.24)

You MUST update the smtpHost and related parameters so as to not use or rely on the
docorigin.com server. As of 3.0.003.24 the default -smtphost, -smtpuser, and -smtppassword
settings are fictitious and MUST be overridden.

SendMail | SendMail Configuration

page 367

Setting Description

-proxyport number If you are using an SMTP server that requires a proxy or SSL link, you must
supply a ProxyPort number. This is a port# on your computer and can be any
currently unused number such as 8801.

-smtphost hostname This is the SMTPHost name provided by the email server. MANDATORY

-smtpuser name Many SMTP servers require authentication - a way to ensure that only valid
users of their mail server can use it for sending messages. Typically this can
be any email user/password combination that has been defined on the
server. If your server does not require authentication override this setting
with
-smtpuser= (nothing after the equals sign).

-smtpPassword
password

The associated password for the SMTPUser setting. The password can be
entered in either plain (readable) text or as a specially encrypted string to
protect it from casual viewing. If the password is entered in plain (un-
encrypted) text, it must be preceded by an exclamation mark as in:

-smtppassword !mypoorsecret
To create an encrypted password string you must run the
DocOriginSendMailServer program in a command shell or bat file with the
command line option of -encode followed by your password.
DocOriginSendMailServer will display the encrypted string that you should
then use with this smtppassword option. If no password is required, override
this setting with -smtppassword=

-smtpport number This is the SMTP port# specified by your SMTP service provider. Often this is
port 25, but many servers do use other port numbers. MANDATORY

-maxProcesses number DocOriginSendMailServer will employ multiple parallel connections to your
email server, by invoking multiple instances of cURL, one per message. This
has a dramatic effect on email send performance. The maximum number of
processes is 64. A value of 20 seems to perform quite well.

-maxRate number If set, message rate is limited by the number per minute. Throttling state is
maintained via "throttling.state" file in mail scan folder (usually $U/Outbox).
(As of 3.1.002.06)

-queue true/false (or
Yes/No)

This tells _sendmail whether to run cURL on its own or give the email files
to DocOriginSendMailServer's outbox queue.

SendMail | SendMail Configuration

page 368

•
•
•

Setting Description

-keep No/Yes This tells DocOriginSendMailServer whether to delete the .eml package after
it is sent, or rename it to a .DONE extension (as of 3.0.003.24, the files are
moved to the -mailsentfolder folder). Leaving -keep out entirely has the
effect of a No setting. Handy for testing / debugging. See also the
args.hold = true; argument in _sendmail. It is quite different in that it
holds the email from being sent, so you can investigate the packages being
created.

-hold No/Yes This tells _sendmail to not launch DocOriginSendMailServer after producing
the files in the outbox.
Generally, this is for testing purposes only, wherein you generate the email
messages but don't send them. This gives you a chance to look to see if your
email message files are being created, and created properly, and allows you,
if desired, to invoke DocOriginSendMailServer explicitly to actually send the
emails at some point in time.

-testMail emailAddress If set, all To, CC, and BCC values are set to this email address. This allows you
to redirect all mail to yourself when testing your DocOrigin-powered solution.
This can be easier than modifying the data stream for testing.

-trace filename If set, additional trace information will be stored in the named file. If the
filename is omitted, a Trace.txt file will be created in the same folder as the
-logfile entry.

See Also

_sendmail scripting Auto Email

SendMail must be specifically configured for each user environment. The default settings are defined in the
DefaultDocOriginSendMailServer.prm. (Note that despite the "Server" at the end of this file name, the
settings are in fact for both the immediate sending of emails and the queued sending of emails.) This
default file is supplied with your installation. To make changes you should make a copy of any required
sections of the file and store it in your .../User/Overrides folder under the name
DocOriginSendMailServer.prm. This new file is automatically referenced after DocOrigin reads Default-
DocOriginSendMailServer.prm. You can make any changes you like to the version of the file in .../User/
Overrides - they will override the Default version of the file.

The DocOriginSendMailServer.prm file is a text file and contains vital internal comments as to what each
of the settings is for. You will, at the very least, need to change the following:

-smtphost to be your email server
-smtpuser and -smtppassword to your account
and possibly -smtpport if your email server uses a different port number.

SendMail | SendMail Configuration

page 369

• You should also modify the -from the default setting to be one of your email accounts. The -from can also be set
explicitly on each call to _sendmail.

Alternatively (as of 3.2.001.01), for more flexibility, you may specify command-line parameters which will
override settings found in prm file.

DocOriginSendMailServer will take the information found in the message scan folder, typically .../User/
Outbox, establish a connection to your specified SMTP server, and send the message. Upon completion,
the message files are deleted or moved per your configuration settings. When DocOriginSendMailServer
has processed all messages from the scan folder it shuts down.

Immediate or Queued
Email may be sent either 'immediately' or 'queued'. Sending email immediately is rather slow since a
connection to the email server needs to be made and the calling script must then wait until the mail is
actually sent. For this reason, it is often preferred to send email in a queued fashion. This puts the needed
files in a folder, usually .../User/Outbox, and a separate program is launched to look after the sending of
the email (or possibly many emails); meanwhile, the calling script will carry on processing with no waiting.

The folder where queued emails are put is defined by the -mailscanfolder option as specified in the
DocOriginSendMailServer.prm override file. Typically it is .../User/Outbox.

You specify your wish to send emails immediately via a -sendmail immediate directive. More likely, for
performance reasons, you would specify -sendmail queue in order to queue the sending of email while
your script carries on processing. These options can also be specified on a per email basis by supplying
the .queue property as true or false in your _sendmail function call.

var args = {};
args.To = ...
args.Subject = ...
args.etcetera ...
args.queue = false; // Send this email immediately, I'm willing to wait
_sendmail(args);

Similarly, with the Auto Email system, set the Mail Options to either queue:Y or queue:N.

Messages that are sent immediately are processed by the _sendmail function itself. No scanning of folders
is involved. _sendmail launches cURL on its own, waits for it to complete, and then does the necessary
housekeeping.

Messages that are queued, are put, by _sendmail, into the .../User/Outbox folder. There is a pair of files.
One has a .eml extension and contains the entire email package including any attachments. The other file
has a .scan extension and contains the instructions for cURL to use. Once the files are placed in that folder,
_sendmail will launch DocOriginSendMailServer so that it can process any messages that are in the
nominated scan folder, while the script that called _sendmail continues on without waiting.
DocOriginSendMailServer scans the folder for *.scan files and processes each email accordingly.

SendMail | SendMail Configuration

page 370

Aside: As it happens, emails sent immediately do also put a pair of files in the Outbox. One is the
usual .eml file and one has a .config extension. DocOriginSendMailServer never sees those files. _sendmail
handles them directly by using cURL on them itself.

Creating but not Sending and Email (-hold)
You can tell the email system to hold an email and not send it automatically at all using the -hold options
(arg.hold = true; in script, or Mail Options of hold:Y for the Auto Email feature) This causes the .eml file
and an associated .scan file to be placed in a separate /Outbox/Hold subfolder. This can be handy if you
are testing a form or script and you don't want to actually send it - just look at it. If you have a desktop
email client (such as Outlook) you can double-click on the .eml file and see the email as it would be
displayed if it had been sent.

If you move the .eml file and its associated .scan file back to the parent Outbox folder, it will then be sent
the next time DocOriginSendMailServer is run. (It requires no parameters, so it is easy to run!)

Post-Send Housekeeping
If the transmission of a message is not possible due to some parameter error or email system error, the
pair of files is (as of 3.0.003.24) moved to the subfolder as defined via the -mailErrorFolder directive in your
DocOriginSendMailServer.prm file. The default is to go a sub-folder named Error. This folder will be
immediately under the scanned folder, hence it is typically .../User/Outbox/Error. Prior to 3.0.003.24,
the .scan (or .config) file would've been left in place but renamed to have a .ERR extension.

If the email send is successful then the pair of files will either be deleted or renamed/moved. Normally they
would be deleted. This is controlled by the -keep option in the DocOriginSendMailServer.prm file. If
-keep is not specified, it is assumed to have the value No and hence the successfully sent email files will be
deleted. If you are not queuing the emails (i.e. args.queue = false this can also be controlled on a per
_sendmail (or Auto Email Mail Options) basis by specifying the .keep property as either true or false.

If you do choose to keep the files even after a successful send... before 3.0.003.24, the .scan file would've
remained in place but be renamed to have a .DONE extension. As of 3.0.003.24, the pair of files would be
moved to the subfolder identified by your -mailSentFolder option. By default, that has the value Sent
and hence the files are moved to folder ../User/Outbox/Sent.

During initial development, it may be useful to specify -keep Yes in order to look at the email files that
were produced. However, if you do so, do remember to empty out that folder from time to time as folders
with many many files can slow the system down. The folder name specification can have the usual date
substitution % variables in it (e.g. %U is replaced with the current week number). In that way, multiple "Sent"
folders can be created each covering a certain period of time. See File Naming Conventions for file/folder
name syntax.

Prior to 3.0.003.24, if DocOriginSendMailServer encounters a timeout from the SMTP server, (either it's not
available or may be overloaded), the message remains in the scan folder and DocOriginSendMailServer will
attempt to resend it at a later time. The -pause setting below can be used to control when this resend is
attempted.

SendMail | SendMail Configuration

page 371

As of 3.0.003.24, cURL is directed to retry the send -retry times. If it fails, the files are copied to the
-mailErrorFolder folder.

Parallel Connections
Prior to 3.0.003.24, many instances of DocOriginSendMailServer may have been running simultaneously.
However, their invocation of cURL resulted in only a single connection to the email server being made.
Other overheads were encountered as well.

As of 3.0.003.24, only one instance of DocOriginSendMailServer is allowed to run. If _sendmail launches a
second instance, that second instance will detect the first instance and simply exit. The one instance of
DocOriginSendMailServer scans the outbox folder for .scan files and will launch up to -maxProcesses
instances of cURL in parallel to process the messages. If the software generating the emails gets ahead of
DocOriginSendMailServer, the latter will find many email messages to send but will process them in a
parallel fashion. There is a hard limit of 64 simultaneous connections, though your email server may have a
lower limit.

As always, DocOriginSendMailServer exits when it finds no further email messages to send (i.e. no
more .scan files). _sendmail launches DocOriginSendMailServer only after it has created the pair of files
(.eml, .scan) in the outbox folder.

Option List
The following command line parameters control the DocOriginSendMailServer process. There is a Default-
DocOriginSendMailServer.prm file located in the DO/Bin folder of your install. This prm file will
automatically be loaded when DocOriginSendMailServer starts running. It is also loaded by any call to
_sendmail. There are some default settings that come with your installation. You must make a copy of this
file and place it in the .../User/Overrides folder under the name DocOriginSendMailServer.prm – do
notice the dropping of the Default- prefix. This becomes your custom settings file. Put any overrides to the
default settings in this Overrides file (if one exists, be sure to remove the @@ reference at the bottom of the
copied file).

The following parameters are in addition to those listed in the _sendmail() function description and are
specific to the Windows platform. Fields marked as MANDATORY must be defined either in the default
parameter file or passed via a _sendmail() args setting or via an included parameter file.

Setting Description

-checkAddress Yes/No Do basic email address format validation.

You MUST update the smtpHost and related parameters so as to not use or rely on the
docorigin.com server. As of 3.0.003.24 the default -smtphost, -smtpuser, and -smtppassword
settings are fictitious and MUST be overridden.

SendMail | SendMail Configuration

page 372

Setting Description

-encode password If DocOriginSendMailServer is run with this as its only command line
parameter, (not from the prm file), an encrypted version of the supplied
password is displayed. You can use this in conjunction with the smtppassword
setting below to hide the true user password.

-from emailAddress The default "from" address to be used. The smtp server may require that this
be a valid address for your email server. This setting can be overridden in the
_sendmail() function. Using Microsoft Exchange? See the note in Sending
Mail.

-header header record Add this additional header to all emails sent. This setting can be overridden
in the _sendmail() function.

-logfile filename Standard DocOrigin logfile entries will be written to this file. We think it is a
good idea to nominate a specific logfile for DocOriginSendMailServer log
messages, rather than use the omnibus, ad hoc, $L/DocOrigin.log. You
probably won't want your DocOriginSendMailServer log messages
interleaved with other simultaneously running processes. MANDATORY

-message filename Standard DocOrigin error message file. MANDATORY, but automatically
supplied in the DefaultDocOrigin.prm file.

-mailscanfolder
fileFolder

This is the name of a folder where the messages are stored by calls to
_sendmail() in Merge etc.
MANDATORY

-pause seconds This causes the DocOriginSendMailServer to wait a few seconds before trying
to resend messages that have failed to send because of an smtp timeout.
Default is 60 seconds. (Obsolete as of 3.0.003.24)

-proxyport number If you are using an SMTP server that requires a proxy or SSL link, you must
supply a ProxyPort number. This is a port# on your computer and can be any
currently unused number such as 8801.

-smtphost hostname This is the SMTPHost name provided by the email server. MANDATORY

-smtpuser name Many SMTP servers require authentication - a way to ensure that only valid
users of their mail server can use it for sending messages. Typically this can
be any email user/password combination that has been defined on the
server. If your server does not require authentication override this setting
with
-smtpuser= (nothing after the equals sign).

SendMail | SendMail Configuration

page 373

Setting Description

-smtpPassword
password

The associated password for the SMTPUser setting. The password can be
entered in either plain (readable) text or as a specially encrypted string to
protect it from casual viewing. If the password is entered in plain (un-
encrypted) text, it must be preceded by an exclamation mark as in:

-smtppassword !mypoorsecret
To create an encrypted password string you must run the
DocOriginSendMailServer program in a command shell or bat file with the
command line option of -encode followed by your password.
DocOriginSendMailServer will display the encrypted string that you should
then use with this smtppassword option. If no password is required, override
this setting with -smtppassword=

-smtpport number This is the SMTP port# specified by your SMTP service provider. Often this is
port 25, but many servers do use other port numbers. MANDATORY

-maxProcesses number DocOriginSendMailServer will employ multiple parallel connections to your
email server, by invoking multiple instances of cURL, one per message. This
has a dramatic effect on email send performance. The maximum number of
processes is 64. A value of 20 seems to perform quite well.

-maxRate number If set, message rate is limited by the number per minute. Throttling state is
maintained via "throttling.state" file in mail scan folder (usually $U/Outbox).
(As of 3.1.002.06)

-queue true/false (or
Yes/No)

This tells _sendmail whether to run cURL on its own or give the email files
to DocOriginSendMailServer's outbox queue.

-keep No/Yes This tells DocOriginSendMailServer whether to delete the .eml package after
it is sent, or rename it to a .DONE extension (as of 3.0.003.24, the files are
moved to the -mailsentfolder folder). Leaving -keep out entirely has the
effect of a No setting. Handy for testing / debugging. See also the
args.hold = true; argument in _sendmail. It is quite different in that it
holds the email from being sent, so you can investigate the packages being
created.

SendMail | SendMail Configuration

page 374

Setting Description

-hold No/Yes This tells _sendmail to not launch DocOriginSendMailServer after producing
the files in the outbox.
Generally, this is for testing purposes only, wherein you generate the email
messages but don't send them. This gives you a chance to look to see if your
email message files are being created, and created properly, and allows you,
if desired, to invoke DocOriginSendMailServer explicitly to actually send the
emails at some point in time.

-testMail emailAddress If set, all To, CC, and BCC values are set to this email address. This allows you
to redirect all mail to yourself when testing your DocOrigin-powered solution.
This can be easier than modifying the data stream for testing.

-trace filename If set, additional trace information will be stored in the named file. If the
filename is omitted, a Trace.txt file will be created in the same folder as the
-logfile entry.

See Also

_sendmail scripting Auto Email

SendMail | Sendmail Verification

page 375

Sendmail Verification
The DocOrigin sends mails via 3rd party tool called curl (https://curl.haxx.se/).

In order to verify that you can send emails, we provide you with the following simple test steps:

1. Store the following to an email.txt file, adjusting as needed:

From: John Smith <john@example.com>
To: Joe Smith <smith@example.com>
Subject: an example.com example email
Date: Mon, 7 Nov 2016 08:45:16

Dear Joe,
Welcome to this example email. What a lovely day.

2. Execute the following command after adjusting the SMTP server, user, password, and port options:

C:\DocOrigin\DO\Bin\curl smtp://mail.example.com:587 -u SMTP_USER:SMTP_PASS
--mail-from myself@example.com --mail-rcpt receiver@example.com
--upload-file email.txt -v --ssl

3. Note, you may or may not need to add additional security flags, see https://ec.haxx.se/usingcurl-
smtp.html for details.

In a short period of time, you should get an email into your inbox.

If you don't get mail, you either didn't specify parameters correctly or your network configuration is
blocking you from doing that.

https://curl.haxx.se/
https://ec.haxx.se/usingcurl-smtp.html

SendMail | Signing and Encrypting mail

page 376

1.

2.

3.

4.

Signing and Encrypting mail
(As of 3.2.001.02)

DocOrigin supports email signing and encryption. External tools may be used to do the actual signing. We
propose to use OpenSSL v.1.1.1 tool since this one is able to handle S/MIME v3.1 mail. You should get this
tool and make it available to DocOrigin. You may do this by adding it to PATH or specify the full path to
OpenSSL in DocOrigin config as we'll show below.

Note, signing and encryption are independent tasks. While you may do encryption it is unlikely that you
need it because to encrypt mail for say 1000 different recipients you need to have a 1000 public keys. But
for signing, you need to have only one (your own) digital ID and all your recipients should trust it.

That is what you need to do to organize mail signing:

Get your digital ID. If you do not have one there are many ways to do this, you may just google
"create digital id certificate". In our demo we will use Signer.cer and password-protected
Signer.private.key in PEM format.
If you are going to encrypt a mail for some user then get that user certificate. In our demo, we will
use User.cer in PEM format.
Get the OpenSSL tool. In our demo, we will use the one which is shipped with GIT - "c:\Program
Files\Git\usr\bin\openssl.exe"
Specify signing and encryption options in your scripting. See the demo below.

Imagine that you put your keys in the same folder along with the following script:

var args = new Object();
args.from = "signer@domain.com";
args.subject = "SubjectTest";
args.to = "user@domain.com";
args.text = "messageBody";
args.signingParams = "-signer Signer.cer -inkey Signer.private.key -passin
pass:XXXYourPassXXX";
args.encryptionParams = "User.cer";

_sendmail(args);

Notice the last two parameters: signingParams and encryptionParams. If those are specified then the
corresponding routine is activated. The rest of the settings (which are unlikely to be changed) are located
in Default-DocOriginSendMailServer.prm file.

When you run that script (with parameter $P="c:\Program Files\Git\usr\bin") your user should get
signed and encrypted mail. The look and support will vary from one mail client to another. But for example

If you are on Linux, you may want to override the default "-signingTool $P/
openssl.exe" and -encryptionTool $P/openssl.exe from Default-
DocOriginSendMailServer.prm file.

SendMail | Signing and Encrypting mail

page 377

in Outlook you should see "lock" and "red ribbon" badges on the top right, you may click on them for
details.

You are free to use another signing tool or customize all parameters, see https://www.openssl.org/docs/
man1.1.1/man1/cms.html for details.

Microsoft Outlook Example

If you are using encryption then your recipient should add his private key to mail client. For
example in Outlook it is under File > Options > TrustCenter > Settings > EmailSecurity >
DigitalIDs > Import...

https://www.openssl.org/docs/man1.1.1/man1/cms.html

SendMail | Email on Linux

page 378

Email on Linux
DocOrigin supports the _sendmail function on Linux. This support is accomplished through the use of the
extremely popular curl facility. In general, Linux OSes include curl in their distributions. curl supports many
different protocols. For sending mail, the smtp protocol must be supported. The version of curl installed
on your Linux OS may or may not include support for the smtp protocol. If it does not, you will need to
update your version of curl to a version that does support smtp.

At the time of this writing, RHEL 6 (Red Hat Enterprise Linux 6) shipped curl version 7.19.7, and that does
not include support for smtp. At present, the current version of curl is 7.37.0. curl has supported smtp as
far back as version 7.21. RHEL 7 ships a curl (7.29) that does support smtp.

curl is available for free from The curl Download site.

curl is available for many platforms. The most popular Linux platform for DocOrigin is commercially
supported Red Hat or its community-supported mirror: CentOS.

Nothing remains static. Linux variations and feature development are constant. DocOrigin cannot
distribute curl and the libraries it uses for every platform and version. Distribution licensing is also very
complicated, but curl is free for you to download, install and use.

At the curl download site, you can use the Download Wizard or search the long table for your OS. At least
for RHEL6/CentOS6, this will lead you to another page with an incredibly long list of versions available for
download.

If you are after the latest version, 7.37.0, for RHEL6, 64-bit you will arrive at:
http://mirror.city-fan.org/ftp/contrib/sysutils/Mirroring/curl-7.37.1-3.0.cf.rhel6.x86_64.rpm

Download it, or use wget to fetch it to your target system.

On the same page is the corresponding version of libcurl:
http://mirror.city-fan.org/ftp/contrib/sysutils/Mirroring/libcurl-7.37.1-3.0.cf.rhel6.x86_64.rpm
Download it, or use wget to fetch it to your target system.

The comments at the top of this page of links inform you that curl needs some additional libraries: c-ares,
libidn, libmetalink, and libssh2. And it gives you a location to fetch those libraries:
http://mirror.city-fan.org/ftp/contrib/libraries/

When you go to that page you can find the RHEL6, x86_64 versions of those libraries. Note libidn versions
stop at RHEL5. That's because as of RHEL6, that library is included with the OS. But the rest are available as:
http://mirror.city-fan.org/ftp/contrib/libraries/c-ares-1.10.0-3.0.cf.rhel6.x86_64.rpm

Before getting too engrossed in these details, perhaps you should skip down to the 'Updating cURL
via yum' topic that follows this.

CAUTION

The detailed version numbers cited here change often. Verify the latest numbers at the applicable
download site.

http://curl.haxx.se/download.html
http://mirror.city-fan.org/ftp/contrib/sysutils/Mirroring/curl-7.37.1-3.0.cf.rhel6.x86_64.rpm
http://mirror.city-fan.org/ftp/contrib/sysutils/Mirroring/libcurl-7.37.1-3.0.cf.rhel6.x86_64.rpm
http://mirror.city-fan.org/ftp/contrib/libraries/
http://mirror.city-fan.org/ftp/contrib/libraries/c-ares-1.10.0-3.0.cf.rhel6.x86_64.rpm

SendMail | Email on Linux

page 379

http://mirror.city-fan.org/ftp/contrib/libraries/libmetalink-0.1.2-6.rhel6.x86_64.rpm
http://mirror.city-fan.org/ftp/contrib/libraries/libssh2-1.4.3-15.0.cf.rhel6.x86_64.rpm

There are lots of other libraries. Try not to get distracted. As time moves on, depending on your OS and its
version, you will likely need to select slightly different rpm files.

Having downloaded the required rpm files, you now need to install them. This will require root privileges as
it does install into /usr/bin and /usr/lib64.

cd /tmp
wget http://mirror.city-fan.org/ftp/contrib/sysutils/Mirroring/
curl-7.37.1-3.0.cf.rhel6.x86_64.rpm
wget http://mirror.city-fan.org/ftp/contrib/sysutils/Mirroring/
libcurl-7.37.1-3.0.cf.rhel6.x86_64.rpm
wget http://mirror.city-fan.org/ftp/contrib/libraries/c-
ares-1.10.0-3.0.cf.rhel6.x86_64.rpm
wget http://mirror.city-fan.org/ftp/contrib/libraries/
libmetalink-0.1.2-6.rhel6.x86_64.rpm
wget http://mirror.city-fan.org/ftp/contrib/libraries/
libssh2-1.4.3-15.0.cf.rhel6.x86_64.rpm
#
sudo rpm -Uvh c-ares*.rpm
sudo rpm -Uvh libmetalink*.rpm
sudo rpm -Uvh libssh2*.rpm
sudo rpm -Uvh curl*.rpm libcurl*.rpm

Of course, you will have to pay attention to all messages. Perhaps it will report the need for other libraries
which you will have to resolve for your OS and version. At the end of it all, you should have a /usr/bin/curl.
Perhaps you will get a message about an installed library being incompatible. One recourse is to uninstall
(erase) it. But that's at your risk. E.g.

sudo yum erase libcurl-devel-7.19.7-37.el6_4.x86_64 --assumeyes

A good test is to run:

/usr/bin/curl --version

and to look at the version of curl and the supported protocols that it supports.

Once curl is installed, please cd to wherever you have DocOrigin Merge installed. Typically, /var/
DocOrigin/DO/Bin but that may vary depending on your version of DocOrigin. If you have an older version
of DocOrigin, then you must:

cd the-location-of-DocOrigin-Merge
rm -f curl
rm -f libcurl*
ln -s /usr/bin/curl curl

That will provide a symbolic link to the just installed curl and it will remove older, local DocOrigin versions
of libcurl, if any exist.

http://mirror.city-fan.org/ftp/contrib/libraries/libmetalink-0.1.2-6.rhel6.x86_64.rpm
http://mirror.city-fan.org/ftp/contrib/libraries/libssh2-1.4.3-15.0.cf.rhel6.x86_64.rpm

SendMail | Email on Linux

page 380

At that point, you should be able to use the DocOrigin _sendmail function. If you have a post 3.0.003.15
version of DocOrigin installed you may wish to run the email.sh shell script that is in .../DO/Bin for it to do
some checking on your email support via curl.

Updating cURL via yum
The posting at http://serverfault.com/questions/321321/upgrade-curl-to-latest-on-centos provides a
potentially easier way. But again, things change. Use this as only a solution that worked 'at one time'. By
using yum you don't have to worry about dependencies; it's all worked out for you.

sudo yum clean all
cd /etc/yum.repos.d
sudo gedit city-fan.repo

Put in the following content, but do update that baseurl. Perhaps you use rhel5, for example/

[CityFan]
name=City Fan Repo
baseurl=http://www.city-fan.org/ftp/contrib/yum-repo/rhel6/x86_64/
enabled=1
gpgcheck=0

Save.

sudo yum install curl

And it loads and installs whatever is necessary. Booyah!

http://serverfault.com/questions/321321/upgrade-curl-to-latest-on-centos

Session - DocOrigin Inter-process Communication | Session File Format

page 381

Session - DocOrigin Inter-process Communication
(As of 3.1.002.10)

DocOrigin maintains an internal mechanism for passing information between various DocOrigin programs
that are being spawned internally or explicitly using the DocOrigin scripting functions. This mechanism is
called Session.

A Session is any chain of DocOrigin programs that run to completion. Such as when using FolderMonitor to
spawn Merge to generate a document. Or RunScript calling Merge, or perhaps other DocOrigin tasks. The
Session mechanism provides an alternate way to pass data between these DocOrigin tasks.

You can use script to access the current Session and read or write entries to it. So, for example, if you had a
RunScript program you launched which then called Merge to create a document, you could arrange for
Merge to add some entries to the Session, which you could then access back in your Runscript file. Or you
could have your RunScript program add some additional information to the Session before running Merge
and be able to retrieve that information within the Merge run.

Session File Format
Session information is stored as basic name:value pairs, similar to ini/profile entries or the cache
mechanism of Merge. Values are currently strings or numbers. Names are standard alphanumeric names.
DocOrigin does have some internally generated names such as _LastApp and _LastUpdated which are
preceded by the underscore character - so it is best that you do not create names with a leading
underscore.

Script access to Session data
Within DocOrigin tasks which support JavaScript, you can set Session values or fetch Session values using
the _session functions. See _session for details.

Merge Command Line Options
DocOrigin Merge has a command option called -setSession which tells Merge to save named field values
to the session file. You can specify a single field name to be saved or a semicolon-separated list of field
names, e.g.

-setSession "field1;field2;field3"

Specifying the wildcard

-setSession *

Note: There is no need for you to know the internal format of the session file, or even where it is
located. The format could change at any time. Use _session to access it.

Session - DocOrigin Inter-process Communication | Merge Command Line Options

page 382

will save all form fields to the session file. This means that you can return some or all of the document field
name/value pairs to the task that called Merge. In all cases, it is the leaf node name that is saved. E.g. City,
not ShipTo.City or BillTo.City. Also / consequently it is the last instance of each field that is saved/passed
along.

Typically Merge is called in a Job Processing Script (JPS) and thus those returned session variables (fyi:
sometimes we call them settings) are available not only to the JPS but also to any subsequent DocOrigin
programs called by that JPS.

Using the command

-setSession *metadata

will cause selected metadata fields such as total DocumentCount, PageCount, and SheetCount to also be
stored in the Session.

Hint: Use the _session.object() script function to look at all the names/values saved for the session.

See Also

 _session scripting Auto/Embedded Fields See the [!Session xxx] embedded field

Command Line Processing | Merge Command Line Options

page 383

Command Line Processing
All of the non-interactive programs in the DocOrigin program suite (i.e. other than Design, FilterEditor and
ConfigEditor) use a common command-line syntax and set of defaults. See Invoking Command Line Apps

Programs that run from a command line have the following basic syntax:

ProgramName –option1 value1 –option2 value2 …

Option names are documented in the Common Command Line Options as well as the Command Line
Options of individual programs - see Merge Command Options for instance. Generally, the option names
can be mixed upper and lower case and are case insensitive. The following two are equivalent:

Merge -PDFCombineDocuments Yes ...
Merge -pdfcombinedocuments yes ...

All Option names and values are separated by one or more blanks. The values must be surrounded by
double-quotes if they contain embedded blanks. The syntax Option=value can also be used. In that case, it
is likely best to surround that whole pair with quotes.

If the same -option name occurs multiple times on the command line only the last setting takes
effect. This allows you to override default settings made in the Default prm files (see below). Note
also that the -parm, -cache, and -filter, (and as of 3.1.001.26 -attachment) option settings of
Merge are exceptions — multiple occurrences of those options are all retained. Other exceptions
will be noted in the documentation.

Command Line Processing | Indirect Parameter Files (.prm files)

page 384

Indirect Parameter Files (.prm files)
As well as listing the command options directly on the command line, groups of them can be stored in
special parameter files and referenced on the command line:

ProgramName @myoptions.prm –option value – @mysecondoptions.prm —

Any number of indirect parameter files can be specified. The use of these .prm files can simplify the setup
of applications — such as Merge — which have large numbers of parameters. The .prm file is a plain text
file in which each option/value pair set is listed on a separate line.

Any line whose first real (non-whitespace) character is either a *, ;, or a [is ignored (treated as a
comment). Also, blank lines are ignored. As an example:

* Test file for myform Merge
*
-form C:/DocOrigin/User/Forms/myform.xatw
-data C:/DocOrigin/User/Forms/mydata.xml
-output C:/DocOrigin/User/Output/myform.pdf

Note that double-quotes around values with embedded blanks become optional in parameter files. The
above note applies to simple name/value options. In situations of compound options such as the -filter
option, values of sub-options, e.g. -split="^page 1", will need quoting.

These command files can also include other command files by using the syntax @filename within an
existing command file.

Conditional prm files
You may also use the syntax @@filename to reference an indirect .prm file. An @@ reference is
conditional — if the file does not exist no error is reported, it is simply ignored. You will see these in many
of the Default .prm files described below.

Text Substitution
(As of 3.1.002.04)

Indirect files support a mechanism to create shorthand names for longer paths or other text that is often
repeated within the files. The -define command is used for this purpose

-define mypath c:/DocOrigin/User/Forms/Mytests

-form {mypath}/myform.xatw
-data {mypath}/mydata.xml
-output {mypath}/myform.pdf

Command Line Processing | Indirect Parameter Files (.prm files)

page 385

Everywhere within the command file processing where a name is found between {braces} will be replaced
by the text defined by an earlier -define statement. If the name within the braces is not found, the original
text (and braces) will remain as-is.

Command Line Processing | Default Parameter files

page 386

Default Parameter files
Whenever any DocOrigin application starts it will look for a special default parameter file, Default-
DocOrigin.prm, for options to be included in the command line automatically.

It will then look for an application-specific default parameter file. That file's name is Default- followed by
the application name (e.g. Merge), and a .prm file extension. This Default- .prm file is located in the same
file folder as the program itself.

For example, with a standard DocOrigin install, Merge is located at:

C:/DocOrigin/DO/Bin/Merge.exe

and its associated Default prm file is at:

C:/DocOrigin/DO/Bin/Default-Merge.prm

These files are optional. If the file is present, the parameters in the file will be processed before any others
on the command line.

Default parameter files can be useful in defining site-wide default configuration of email options, standard
logfiles, error message files, etc. Note that certain programs that are run automatically in the background
such as the DocOriginSendmailServer program will rely on its default parameter file for its required
settings — in this case, SMTP settings, etc.

The standard DocOrigin install creates Default .prm files for most of the DocOrigin applications. These files
are readonly when installed. They WILL be overwritten when you re-install DocOrigin.

DocOrigin allows you to set up your own set of default settings. Prior to 3.1.001.23, the default .prm files
ended with a soft @@ reference to a similarly named .prm file e.g. @@$O/Merge.prm, in the $O, i.e. .../
User/Overrides, folder. Starting in 3.1.001.23, no ending @@ line is required or desired. Instead, whenever
a DocOrigin executable loads a .prm file with a Default- prefix in its name, and residing in the DO/Bin
folder, then that program will automatically look for a possible user override .prm file of the same name,
but without the Default- prefix in the $O folder.

fyi: This was automated because users, to create their override file, would copy the entire
Default-xxxxx.prm file to $O and would forget to remove the trailing @@$O line. The result was a near
endless loop that made program start times soar.

The User/Overrides folder is NOT overwritten when DocOrigin is re-installed. This allows developers to
conveniently alter or add additional default settings without modifying the standard
Default-ApplicationName.prm file.

Command Line Processing | Order of Precedence

page 387

1.
2.
3.

Order of Precedence
Merge command-line options can come from the configuration file (.prt), the command line, or a command
file. Many options can appear in more than one of these places. Some of the options may be overridden at
runtime by JavaScript calls. The order of precedence is:

Runtime javascript overrides all other sources of command-line options.
The command line and command file(s).
The configuration file.

Command-line options are processed sequentially, left-to-right. A command file reference (an
@parmFile.prm option) is expanded when it is encountered. It is exactly as if all entries in that file are
directly in the command line, replacing the reference itself. If a command-line option is set more than once,
the last setting takes precedence.

There is one other command-line option that has immediate effect, as the options themselves are being
processed. That is the -cd newFolder option. If you were to supply -cd myProjectfolder on the command
line then a subsequent reference to @@myProjectParms.prm would look for that file in the most recently
cd'ed to folder.

In a sense, $X option definitions (see $X String Substitutions) are executed immediately. That is, as
soon as a $X path-ofchoice option is encountered, the meaning of $X is immediately changed. This
means that subsequent use of something like @@$X/myParms.prm will employ the most recent
definition of $X.
The use of the "@$X/..." example above is reflective of an active command-line option, not just a
static setting. One could set "-form $X/myForm.xatw" and it matters not what the value of $X is at
the time that setting is recorded. It will take on the value of $X as it happens to be at the time that
the form file is opened. Settings just 'set'. @ and @@ options are active; they take an action; they
employ the latest $X value option settings in effect, at the time of taking the action.
$X type options are usually used in file names/paths. The resolution of those $X type options is not
made until the nominated file name is about to be opened. We call that operation 'hardening the
path'. That hardening is done at the last possible instant so that files can be referenced more
flexibly. See also _file.resolveName.

Command Line Processing | Invoking Command Line Apps

page 388

Invoking Command Line Apps
First of all, customers do not usually run DocOrigin Merge directly by keying a command on the command
line. Truly, with some other applications, notably RunScript, that is more likely. See Invoking RunScript. Merge
though, is generally run, in development mode. via a preview operation from within Design, or in
production mode, via FolderMonitor's detection of a data file to process and subsequent invocation of a
Job Processing Script. Customers also have the option of launching Merge from their own application code.
But it is possible, from time to time, that you will want to invoke a DocOrigin application directly from the
command line. There is no mystery:

Programs that run from a command line have the following basic syntax:

programName –option1 value1 –option2 value2 …

.prm Files
First a reminder about .prm files. They are extremely useful. Yes, there is a bit of indirection in their use —
instead of putting the parameters on the command line itself, you put them in a file and simply reference
the .prm file as-is:

programName @myParms.prm

Having created that .prm file you so often want to go back and change it a little, this way and that, back and
forth, test after test. That is so much easier to do than re-entering a full command line. Before/While going
down the road of planning typed-in command lines, do keep considering those super flexible .prm files.
They let you put in comments, you can nest them, you can escape much of the tyranny of parameter
quoting, each line is not super-wide so you can grasp its meaning so much more quickly. When thinking
about invoking Command-Line Apps, think prm files.

Convenience Invocation
The following is about mere convenience features that you may choose to use and which provide us a
means to hide away the details of where you may have happened to install DocOrigin. This really has no
place in production usage but might be useful during development.

... On Windows

DO_ROOT
When DocOrigin is installed, it does update your system and current user PATH variables with .../DO/Bin
folder. Also it adds an environment variable named DO_ROOT to your system. It contains the fully qualified
path to where you installed DocOrigin. Our favorite such place is: C:\DocOrigin.

https://docs.docorigin.com/reference-manual/command-line-processing/invoking-command-line-apps#:~:text=recurring%20development%20desires.-,Invoking%20RunScript,-Something%20of%20a

Command Line Processing | Invoking Command Line Apps

page 389

DO.bat
We also deliver a convenience .bat file named DO.bat. It is deposited into the .../DO/Bin folder of your
chosen installation folder. However, we urge you to copy it out to somewhere in your PATH. The end result
then is that at a Windows command prompt you can code:

DO Merge merge-parms-as-needed

That's pretty easy.

There's not really much to it. In fact you could've taken advantage of the fact that the DO_ROOT
environment variable was defined and instead code:

"%DO_ROOT%\DO\Bin\Merge" merge-parms-as-needed

But the needed quotes, \DO\Bin, and %s are pretty ugly and tedious.

Naturally, this applies to other apps such as RunScript, uconv, ConvertDatToXml, ... whatever it is that you
wish to run in a standalone, command line, way.

DO.bat Parameter Count Limit
There is a caveat here. DO.bat is just a plain old .bat file. Have a read. It is limited by the arcane wonders of
Windows command prompt processing. Normally that means that it can reference only 10 parameters, %0
through %9. (And the %0 is 'DO' itself!). As of 3.0.003.28, that limit has been brute force increased to 29
parameters. If you are in the habit of typing in command lines with that many parameters then I suggest
that you explore other methodologies.

As many parameters to DocOrigin applications are of the format -name=value be aware that that equal
sign, unless quoted as "-name=value", will come through as a blank, and hence the construct will count as
two parameters.

Again, remember .prm files. A real treat is:

DO app @myParms.prm

there is no parameter overflow there!

Other DO.bat Features
DO.bat has in it recognition of some special options. These allow it to more easily take you to:

Usage Syntax

The HTML documentation that is installed on your system DO doc

The samples DO sample

A specific sample DO sample 2

Command Line Processing | Invoking Command Line Apps

page 390

Usage Syntax

Invoke the sample fm.bat file that some people use during development
to test out their usage of FolderMonitor.

DO fm

start | stop | list

Invoke a .bat or .exe file, but check for an override in the .../User/
Overrides folder before using the .../DO/Bin folder.

DO xxx.bat

... On Linux

DO_ROOT, LD_LIBRARY_PATH
When DocOrigin is installed, it does not use root access. It does not set any environment variables.
However, we really do like to have an environment variable named: DO_ROOT. It is to contain the fully
qualified path to where you installed DocOrigin. Our favorite such place is: /var/DocOrigin3.0.

We also require that the LD_LIBRARY_PATH be augmented to include the .../DO/Bin folder of the chosen
installation location.

We accomplish this by supplying a shell script named DO. That is provided in the usual .../DO/Bin folder. At
install time it is dynamically constructed and contains the name of the installation folder.

We urge you to copy that DO shell script somewhere into your PATH. If you put it in your PATH then you
don't have to continually give a fully qualified path name in order to invoke it. The end result then is that at
a shell prompt you can code:

DO Merge merge-parms-as-needed

That's pretty easy.

That will define and export DO_ROOT every time and will adjust the LD_LIBRARY_PATH as needed before
invoking the named application.

Other DO Shell Script Features
The DO shell script has in it recognition of some special options. These allow it to more easily take you to:

Usage Syntax

The HTML documentation that is installed on your system DO doc

The samples DO sample

A specific sample DO sample 2

That's why you really, really need to run the POSTINSTALL shell script after you do an install.

Command Line Processing | Invoking Command Line Apps

page 391

Usage Syntax

Invoke the sample fm shell script that some people use during
development to test out their usage of FolderMonitor.

DO fm

start | stop | list

Start up the viewer (often Firefox) associated with a file — e.g. a PDF or
HTML file

DO viewer file name

It may be that you will want to customize the DO shell script to better address your recurring development
desires.

Invoking RunScript
Something of a personal digression...

In my experience, during development, I often want to run RunScript standalone from the command line.
It's just too handy! I do this A LOT. For me, typing out:

DO RunScript "-script=abc.wjs" -form xxx.xatw -in vvv.txt ...

is just too much effort. Most of the time, during development, my script has some hard-coded test values
as defaults, at least until I get by the initial prototype working. My most common invocation of RunScript is
as follows:

rs foo

Where foo.wjs is the script I am developing. It may seem an absurd amount of abbreviation, but did I tell
you that I run this A LOT? The rs.bat script in my path is awfully simple, but it affords me a place to do all
the things that I want to do every time. I like to delete all my log files. It just makes it easier to cope. My
rs.bat file allows me to specify or not specify the .wjs extension. I could worry about more parameters or
other features but this is simple and I like simple.

My rs.bat

@setlocal
@echo off
if exist "%DO_ROOT%\User\Logs*.log" del /f "%DO_ROOT%\User\Logs*.log"
set script=%~1
set ext=%~x1
if "%ext%" == "" set script=%script%.wjs
"%DO_ROOT%/DO/Bin/RunScript" -script="%script%" %2 %3 %4 %5 %6 %7 %8 %9

On Linux, the least I can do is to define an alias of:

alias rs='/var/DocOrigin3.0/DO/Bin/RunScript -script '

I really do encourage you to take some time to set up a development environment that is nice for you. Do
use GUI apps when you can but when some of the underlying tools that you use are command-line based
you are going to want to be able to invoke them easily. Once you have developed your custom data filter

Command Line Processing | Invoking Command Line Apps

page 392

script or your special Job Processing Script, you will deploy them in ways suitable to production, and these
development-time command-line invocation tricks won't matter.

See Also

Common Command-Line Options

Common Command Line Options | Invoking Command Line Apps

page 393

Common Command Line Options
The non-GUI DocOrigin programs all use a standard set of command-line options listed here.

In the following descriptions, allowable option values are shown next to the command option. If a word is
decorated as word it indicates a placeholder name whose value you are to define – such as filename.
Options without the word decoration are the actual allowable values. Where there is more than one actual
value, they are separated by the | symbol to indicate fixed value options.

Some of the options that follow are mandatory (such as –logfile and –message), and others are optional.
When an option is mandatory it will be so noted.

For convenience, most of the Default prm files will set default logfile and message files but you are free to
override them as you wish.

See Command Line Processing for more information on command line syntax.

For application-specific command options, see the individual DocOrigin program document.

See Also

Merge Command Options FolderMonitor Command Options

Common Command Line Options | -alert

page 394

-alert
Turns email alerts on or off.

Syntax
-alert Y/N

Description
Turns email alerts on or off. By default, alerts are off.

It's a good idea for you to specify a -alertTo option in a command parameter (.prm) file, likely your
DocOrigin.prm override file. Then use -alert N to turn it off or on as desired.

See Also

-alertLevel -alertMsg -alertSubject -alertTo

Common Command Line Options | -alertLevel

page 395

-alertLevel
Indicate which level of messages will trigger email alerts.

Syntax
-alertLevel Information|Warning|Error|Fatal

Description
Indicate which messages will trigger email alerts. Each message has an associated severity level –
Information, Warning, Error, or Fatal. When alertLevel is set to one of these levels, all messages with
this severity or greater will trigger email alerts. The default is severity Error.

See Also

-alert -alertMsg -alertSubject -alertLevel

Common Command Line Options | -alertMsg

page 396

-alertMsg
Provide additional message text to accompany the alert.

Syntax
-alertMsg text

Description
Email alerts automatically set the email message to the same message that is normally logged to the logfile
– including the time and date stamp.

The -alertMsg is an additional (optional) text message to add to the message. The text can be multi-line by
separating each line by a semicolon as in:

-alertMsg "This is an alert;this is the second line;this is the third"

Alert messages (and the alertSubject) can also contain certain system information strings. These are
specified by the following syntax:

-alertMsg "Error: [MsgID];Registration ID: [RegID]"

The processing will replace [MsgID] with the current message ID, and [RegID] with the customer's
registration ID. The following substitutions are possible:

[App] – The name of the program that's running – for example Merge

[Keyfile] – The name of the registration keyfile if it can be found. This file is often
named using the customer name or some system name, making it
useful in identifying exactly which computer sent the alert.

[MsgID] – the error/message identifier. This uniquely identifies the error within
each program.

[RegID] – the customer's DocOrigin Registration ID if it can be found.

[SysID] – the computer's DocOrigin System ID if it can be found.

See Also

-alert -alertLevel -alertSubject -alertTo

Common Command Line Options | -alertSubject

page 397

-alertSubject
Specify the email subject line for the alert.

Syntax
-alertSubject text

Description
Specify the email subject line for the alert.

This is a single line of text. You can also use the same substitution strings as for the -alertMsg option.

Structuring the subject line with key information can facilitate the identification of critical alerts when
viewed within an email inbox.

See Also

-alert -alertLevel -alertMsg -alertTo

Common Command Line Options | -alertTo

page 398

-alertTo
Identify the email addresses that an email alert is to be sent to.

Syntax
-alertTo address1;address2;…

Description
These are the email addresses that the email alert is sent to. If there is more than one address, separate
the addresses with semicolons. This parameter is mandatory if you are using email alerts.

See Also

-alert -alertLevel -alertMsg -alertTo -alertSubject

Common Command Line Options | -cache

page 399

-cache
This command-line option presets _cache variables that can be accessed via script - see script object
_cache.

Syntax
-cache name1:value1;name2:value2;...

Description
This provides application programmers the opportunity to pass data directly to their form scripts. -cache
options set -cache variables. -cache variables survive across document boundaries (unlike global fields).

In JavaScript, using the above syntax example _cache.name2 returns value2 as its result.

Outside of JavaScipt, -cache variables can be referenced directly in forms or data via the automatic/
embedded field reference syntax of [!Cache name]. For example, using the above syntax example, [!
Cache name2] would have value2 substituted.

The name string must contain only alphanumeric characters or the '_' (underscore) character.

You can specify multiple name/value pairs by separating each pair with a semicolon. Also, you can specify
multiple -cache options and they will be combined, not overridden.

Note that if any string contains blanks the entire -cache parameter must be enclosed in double quotation
marks, for example:

-cache "first:this is the first value;second:and this is the second"

See Also

Command Line Processing Auto/Embedded Fields _cache script object

Common Command Line Options | -cd

page 400

-cd
Set the current directory.

Syntax
-cd directory

Description

By putting a -cd directory option near the start of your Merge command line, you may be able to save
having to specify the same path for several other command-line options.

At any rate, it establishes the current directory for the Merge operation. Note that $B is unaffected by this
and will remain constant throughout as the directory that was the current directory when the Merge
executable was run.

See Also

$X String Substitutions

This is a highly atypical command. It is operated upon immediately as soon as it is encountered
and then it is thrown away.

Common Command Line Options | -clearLog

page 401

-clearLog
(As of 3.2.002.04)

Empty the log before the run begins.

Syntax
-clearLog Y

Description
Using -clearLog or -clearLog Y will empty the log before the run begins.

This can be handy during dev/test.

Common Command Line Options | -debug

page 402

-debug
Ask for debug output from suitably instrumented JavaScript code.

Syntax

-debug

Description
Sets a JavaScript variable called _DEBUG to true. This command-line option is intended to assist developers
in debugging scripts. Using this you can conditionally have your _logf and _tracef messages written to
the file specified by the -logfile and -trace command-line options.

For example:

if (_DEBUG) _message("iDataLen=%d",iDataLen);

See Also

Command Line Processing _logf _printf _tracef -logfile -trace Debugging Script

Common Command Line Options | -fileMask

page 403

-fileMask
(As of 3.0.003.13, Windows-only, re DocOriginNotify)

Specify the path and file mask of files that DocOriginNotify should watch for.

Syntax
-fileMask path/fileMask

Description
Specify the path and file mask of files that DocOriginNotify should watch for. This needs to be to a local or
network-mounted file system.

-fileMask M:/DO/Outputs/MyName/*.pdf

See Also

DocOriginNotify, the DocOriginNotify.prm file.

Common Command Line Options | -include

page 404

-include
Include the contents of the specified file in the command parameters.

Syntax
-include filename

Description
Include the contents of the specified file in the command parameters.

On the command line itself, this can also be specified as @filename.

See Also

Indirect Parameter Files

Common Command Line Options | -locale

page 405

-locale
Specify the name of the Locale to be used in the program.

Syntax
-locale localename

Description
This command explicitly sets the locale used for language/currency/date/number formatting for the run. If
not set, the locale set on the computer will be used. Also note that in Design you can explicitly override this
default locale for specific Fields, Labels, or other objects.

Locale names are a 2-character Language Code, followed by an underscore, followed by a 2-character
Country Code. As an example, "fr_CA" indicates the French language in Canada.

DocOrigin uses the IBM ICU tools to do all locale conversion. They use standard Language Codes specified
in the ISO-639 standard. The Country Codes are from the ISO-3166 standard.

See Also

Command Line Processing Internationalization _locale

http://www.loc.gov/standards/iso639-2/php/code_list.php
https://www.iso.org/iso-3166-country-codes.html

Common Command Line Options | -logfile

page 406

-logfile
Specify the name of the log file where Merge will write job-related information.

Syntax
-logfile filename

Description
Specify the name of the log file where Merge will write job-related information, such as start and end times,
and error messages.

This is a mandatory command-line option, however, it is supplied automatically by the Default-
DocOrigin.prm file. Of course, you may override it on the command line or in your own .prm files.

See the File Naming Conventions section for additional restrictions and options. This includes the ability to
inject various date-time-related placeholders in the log file name, as well as referencing file values.

If the specified log file already exists, DocOrigin programs append to the end of the file, otherwise, the file
will be created.

Emergency log file
Sometimes issues arise before the log file has been established. Typically this is during the initial
processing of all the command line parameters. In that case, messages will be appended to the .../DO/Bin/
DocOrigin.log file. This emergency log file will also be resorted to if we are unable to write to your
nominated log file.

By the way, if needed, we make ten slightly spaced attempts at accessing your log file but if all those fail we
will then use the emergency log file. If you detect that your processing times have really slowed down, it
may be because we can't access your log file and all those retries do slow you down. Consider checking .../
DO/Bin/DocOrigin.log from time to time. And yes, even though it is under the DO tree, you may choose to
delete it from time to time.

Most issues reported to this log file will be related to bad/unrecognized parameters. If you get a 'bad arg
list' return code such as 101, 201, or 708 strongly consider looking in this emergency log file.

Finally, if we cannot access this emergency log file either, we will attempt to send an email alert (up to 3
times). However, you must have -alertTo set, as is recommended, for an email alert to occur.

See Also

Command Line Processing File Naming Conventions -alert Return Codes

Common Command Line Options | -logfileFormat

page 407

-logfileFormat
(Windows DocOriginFolderMonitorSVC.prm only)

Specify the file name template for a Folder Monitor instance's log file.

Syntax
-logfileFormat filename

Description
Specify the name template of the log file where FolderMonitor will write job-related information, such as
start and end times, and error messages.

This is related to Folder Monitor only and should not be used for Merge or any other application.

This file name template is used in conjunction with the Folder Monitor instance name to arrive at the actual
log file name to be used by that instance of Folder Monitor.

This parameter is expected to be used in your DocOriginFolderMonitorSVC.prm parameter file (Windows-
only). As the Windows-only FolderMonitorConsole application is used to start various Folder Monitor
instances, this log file name template plus the Folder Monitor instance name is used to provide the
launched instance with its proper -logfile command line option.

In the Folder Monitor context the special placeholder, %i, can be used to indicate where in the log file
format the instance name is to be placed.

See the File Naming Conventions section for additional restrictions and options. This includes the ability to
inject various date-time-related placeholders in the log file name, as well as referencing file values.

If the specified log file already exists, DocOrigin programs append to the end of the file, otherwise, the file
will be created.

See Also

File Naming Conventions

Common Command Line Options | -logSeverity

page 408

-logSeverity
(As of 3.2.002.04)

Specify the minimum severity level of log messages to be logged. This can improve system performance.

Syntax
-logSeverity severityLevel

Description
This option can be used to reduce the number of log messages produced. Specify the minimum severity
level of log messages to be logged. A message's severity is defined in the message file, DocOrigin_EN.xml.

Accepted values are: info, fatal, error, warning/warn.

This sample filters out all log messages with a severity below "Warning", so no "Information" severity
messages are logged:

-logSeverity warning

Common Command Line Options | -message

page 409

-message
Identify the file that contains all error messages issued by DocOrigin.

Syntax
-message filename

Description
Identify the file that contains all error messages issued by DocOrigin.

This is a mandatory option, however, it is supplied automatically by the Default-DocOrigin.prm file.

Do not specify it unless you are pointing to an override message file, possibly for a different locale than EN.

Common Command Line Options | -monitor

page 410

-monitor
(Windows DocOriginFolderMonitorSVC.prm only)

Define a Folder Monitor instance name and indicate if it is started automatically or manually.

Syntax
-monitor "instanceName:Automatic|Manual"

Description
On Windows, the DocOriginFolderMonitorConsole application can start/stop any of a user-defined set of
Folder Monitor instances. These instance possibilities are made known to the DocOriginFolderMonitorSVC
Service by way of its parameter file: DocOriginFolderMonitorSVC.prm.

This is done by entering in as many -monitor lines as desired, into that file.

If the monitor instance is designated as Automatic then when the Folder Monitor service is started, that
monitor instance will also be started. Since, as installed, and as is typical, the Folder Monitor service itself is
started automatically when a reboot is done, that means that all of the Folder Monitor instances
designated as Automatic will also start on a reboot.

If the instance is designated as Manual, then the Folder Monitor Console application can be used to start/
stop such an instance when desired.

See Also

FolderMonitor

Common Command Line Options | -phase

page 411

-phase
(As of 3.1.002.03)

The phase option is used to identify whether the code is running in production, dev, or test. It affects, at the
time of introduction, the !! conditional comments that may appear in the script.

Syntax
-phase production | development | test

At the time of introduction, the setting is sensitive to only whether its value begins with p or not.

Description
During development, it is often the case, (and advisable) to include logging statements in the script code.
That might be _logf, _logPrintf, _tracef, or others. They can be extremely helpful during
development. However, there is a tendency to simply leave them in and hence slow down production. Or
you take them out, or comment them out, and are dismayed when maintenance has to be done on the
script.

As of 3.1.002.03, you can "conditionally comment" your code by starting such lines with !! . To be effective,
that must be at the very start of the line, not indented at all. As long as you are in the development phase,
those !! characters will be replaced with blanks before the code is compiled. However, if -phase p is
provided as a command-line option then the !! characters will be replaced with // before the code is
compiled. Hence all of those logging lines will be commented out, without your physically changing any
code, and yet be instantly available should any maintenance be required. This provides development
efficiency and also improves production performance.

Other functions like _dlogf and _dmessage are still useful since, unless -debug is specified, they will avoid
I/O out to the log file. Nevertheless, evaluation of their arguments will wastefully occur before the function
can discover that it is not to do the actual logging.

It is expected that -phase production will be inserted into the override $O/DocOrigin.prm, on
production DocOrigin servers, but not be so specified on dev machines. Of course, a development person
could occasionally specify -phase p for final testing runs.

Note that these !! conditional comments need not be applied to only logging functions. It might be that in
development you would, for example, override a production output location with a stand-in for use during
development.

This processing applies not just to Merge but to all areas where scripting is used.

See Also

Debugging Script

Common Command Line Options | -setSession

page 412

-setSession
Put field values into the Session table

Syntax
-setSession *

-setSession field1

-setSession "field1;field2[;...]"

-setSession *metadata

Description
This option allows you to populate the Session table with field name/value pairs. It is particularly useful for
inter-process communication.

See Also

Session - DocOrigin Inter-process Communication for details.

Common Command Line Options | -themeColor

page 413

-themeColor
(As of 3.0.003.13, Windows-only, re DocOriginNotify)

Specify the color theme of the toast issued by DocOriginNotify and also the color of the DocOriginNotify
icon that appears in the "systray".

Syntax
-themeColor color name | #rrggbb

Description
Specify the color theme of the toast issued by DocOriginNotify and also the color of the DocOriginNotify
icon that appears in the "systray".

This is most useful when running multiple instances of DocOriginNotify. The theme color can be used to
instantly know which monitored file set has had activity.

-themeColor LightGreen

Recognized color names are: Beige, Black, Blue, Brown, Coral, Cyan, DarkGray, GreenYellow, Gray, Green,
LightBlue, LightCyan, LightGreen, LightGray, LightPink, LightYellow, Magenta, Orange, Pink, Red, Salmon,
Turquoise, Yellow, and White.

Otherwise use #rrggbb where each r, g and b is a valid hex digit.

The default is "Steel blue" #4682B4

See Also

DocOriginNotify FolderMonitor Command Options

Common Command Line Options | -trace

page 414

-trace
Cause debug trace output to be written to the specified file.

Syntax
-trace filename

Description
Write trace, log and debug messages to a file.

filename is the fully qualified name of the file where the trace, log and debug information will be written.
When filename is not fully qualified, Merge will assume the file is to be in the same folder as where Merge
is running.

Note that the JavaScript function _tracef() will write to this filename as well, but will not write anything if
-trace is not set.

See Also

-tracelevel _tracef

Common Command Line Options | -tracelevel

page 415

-tracelevel
(As of 3.0.003.19) (Merge only)

Control which aspects of trace output are to be produced

Syntax
-tracelevel areasOfInterest

Description
Control which aspects of trace output are to be produced. Trace output can be very voluminous so
selecting specific areas of interest is a good idea. If -trace is used without any -tracelevel option then all
trace output will be generated.

areasOfInterest is a list of areas for which tracing information can be produced. These include Font,
Pagination, Script, and Detail. They can be abbreviated using just their first initial. These areas of
interest can be combined by including them in a comma-separated list.

Example
-tracelevel P,S

Which indicates a desire to see tracing about pagination and scripting.

See Also

-trace

Common Command Line Options | -verbose

page 416

-verbose
Cause more output to appear in the log file.

Syntax
-verbose level

Description
One can increase the amount of message output one receives by increasing the level parameter.

One message where this applies is about the appearance in the data stream of fields that do not exist in
the form design. This certainly might be expected or it might be the result of an inadvertent mismatched
case usage in a name. By setting verbose to 100 or more, each such field will be reported. If the verbose
level is less than 100 then at most one message will be issued indicating the presence of some unused data
fields.

At the time of writing this (Nov 2013) that is the only case for the usage of -verbose and 100 is the only
applicable level to use.

Common Command Line Options | -$X

page 417

-$X
Set a value for a $X-type variable.

Syntax
-$X value

$X value // the - is optional

Description
Set the value for a $X-type variable. These variables start with $ and are followed by a single upper case
character. A few such characters are reserved for system use. See $X String Substitutions.

Typically the values assigned to these variables are file paths. It is never a good idea to hard code a file
path deep down in a script (within or outside of a form design). Better to use a $X-type variable and define
that on the command line or in a parameter (.prm) file, as befits the scenario, or the server on which the
script is deployed. Such paths may vary from development to test to production.

While the values are typically paths, (btw) see Default-Paths.prm, they need not be restricted to only
paths. They can be any value that the application's script wishes to use. For the most part, folks would use
a -cache name:value setting for those purposes but using a $X-type variable is fine too, though a single
letter doesn't carry much meaning into an application.

See Also

$X String Substitutions _cache

Scripting | Script Functions

page 418

•

•

•

Scripting
Most DocOrigin applications use javascript to enhance the processing of document data. This scripting
capability includes many extensions to the standard javascript language through the addition of functions
and the pre-definition of certain variables. When run within Merge a document DOM (Document Object
Model) exists which allows access to most of the document objects and their properties. Functions that
greatly exceed the normal 'reach' of JavaScript include file read/write functions, web access functions, send
mail, generic running of any external application, and business charting. Together with all of the other
extension features and normal JavaScript logic facilities, this greatly enhances the document generation
and processing capabilities of the DocOrigin system.

DocOrigin has extended the scope of the built-in scripting engine in a number of ways:

Many additional functions or object methods have been added to specifically benefit DocOrigin document
processing.
See the Script Functions section for a list of available objects and functions.

Certain pre-defined variables such as _DEBUG and the $ variables are automatically initialized when the script is
run.
These variables typically give access to command-line settings in a simple and effective manner.

Additional The Merge DOM (Document Object Model) extensions allow direct access to values, settings, and
objects within the document template.

Script Functions
See the Script Functions section for a list of all available script extensions.

Scripting | Script Files

page 419

Script Files
Scripting for Merge is done via embedded script within the template (.xatw) files. For all other applications,
the script is defined in separate script source files - typically with a .wjs or .wjsinc file extensions. These
files may in nested by using the #include and ##include statements. The #include statement loads the
contents of a specified file. The file must exist or an error is triggered. The ##include by contrast is a
conditional include of the specified file. If the file does not exist the statement is ignored.

The syntax for #include and ##include is:

#include "filename"
##include "filename"

Where filename is any valid filename on your computer. The filename can have any file extension, but in
most DocOrigin examples and documentation we use .wjsinc.

If filename is not a fully qualified name, DocOrigin will assume it's a name within the same file folder as the
source file.

The #include or ##include statement must start on the first character of the line.

Scripting | The Merge DOM

page 420

The Merge DOM
When scripting within Merge a DOM (Document Object Model) is normally available. This provides access
to the various document structure and components and allows you to dynamically modify that structure or
output. The Merge DOM is described under DOM Properties Accessing the Document Structures section of
this manual.

Scripting | $Variables

page 421

$Variables
All non-interactive DocOrigin programs use a common command-line processor. This includes the
availability of a number of $X folder mapping settings that are used as shortcuts for various file paths. See
$X String Substitutions. The $ variables tend to be defaulted in the standard .prm files that come with the
DocOrigin system but can be redefined by you. These variables are all automatically defined within the
DocOrigin JavaScript system as pre-defined javascript variables.

For example, in a typical DocOrigin installation $F is a shortcut to the forms folder (C:/DocOrigin/User/
Forms on Windows).

var mfile = $F + "/myfile.txt";
var mfile2 = "C:/DocOrigin/User/Forms/myfile.txt"; // same as mfile

Note that if the string is to be used in a context where a file name is expected then you can actually embed
the $X reference in the string. E.g. var fp = _file.fopen("$O/myFile.ini");. That is, you can avoid the
tedium of $X + "..." concatenation constructs.

It is highly recommended that you make use of these $ shortcuts when designing your scripts as they will
create code that is easier to manage when moved to a different computer system.

The makers of DocOrigin promise never to use $V, $W, $X, $Y, or $Z. You may use those without fear of a
subsequent release coming along and redefining their meaning.

Further, you can count on:

$var Meaning

$R Your installation folder -- never override this!

$E Where the current executable resides -- set automatically, do not override

$N The base name of the executable, e.g. Merge, RunScript, ... It is set automatically. Do
not stray from this meaning.

$B The current directory at the very beginning of execution. The code sets this for you but
does not itself reference it.

$U Where the User folder tree is; ($R/User) -- we wish that you not override this. The
meaning itself is fixed.

$C Where the *user* configuration files are. This is the meaning that $C has, where you
define it to point to is your business.

$L Where log files are to be kept. Set as you like, but make sure it has this stated meaning.

Scripting | $Variables

page 422

As of 3.0.001.11...

$var Meaning

$$F Where the current form resides, not forms in general, but the current form. (Merge-
only).

$$D Where the current data file resides, not data files in general, but the current data file.
(Merge-only).

$$X Re FilterEditor: In a .xfilter file refers to the location of the .xfilter file

Scripting | _metaData

page 423

_metaData
Access data file metadata

DocOrigin can automatically embed certain additional metadata into data streams that it passes from one
program to another. This data is automatically made available to the called routine.

The metadata is placed at the very end of the data stream and looks something like this. Note: the
DocOrigin processing instruction actually occurs on a single line but is folded here for display purposes.

<!--!#$%* DocOrigin - MetaData *%$#!-->
 <?DocOrigin _origFileName="C:\DocOrigin\DO\Samples\Sample_Invoice.xml"
 _source="CopyDataFile 3.1.001.08" _history="CopyDataFile 3.1.001.08"
 _submitTimeUtc="2016-09-11 20:25:08 UTC" _submitTimeLocal="2016-09-11 16:25:08"
 _userName="Dev_PC\Andy"?>
<!--0000000309-->

You can see in the above, the meta-information that is provided. fyi: The 309 in the above example is the
byte length of the metadata (it varies). This is used to help us select (and remove) the exact amount of
introduced material from the data stream. Often job data files are small, one document, data streams but
DocOrigin also processes very large, multi-document, data files. Being able to effect rapid access to
information is critical.

How to get metadata

QueueMonitor
The prime place where metadata is desired is when data is being funneled to DocOrigin via QueueMonitor,
i.e. via a queue associated with a "virtual printer". It can be good to know when a file was submitted. Note
that by the nature of spool queues, QueueMonitor is not provided with the original file name but rather
receives simply a stream of bytes, so the metadata may not be as valuable as hoped.

To get metadata delivered by QueueMonitor use the -metadata Yes option in the applicable
QueueMonitor port's .prm file. (e.g. DocOriginQueueMonitor9100.prm for port 9100).

CopyDataFile
Another way to get metadata added to your data stream is to use the CopyDataFile program (Windows
only, (also Linux as of 3.1.001.09)). By using the syntax:

 DO CopyDataFile -metadata Yes inputFile outputFile

These metadata facilities are rarely used. They do involve processing overhead in order to hide or
expose their existence as required by the process-of-the-moment. You should not use this feature
unless you have a justifiable value proposition.

Scripting | _metaData

page 424

the output file will have the metadata appended. A standard operation is to have that output file actually
refer to a QueueMonitor-managed virtual printer. Of course, if direct access is available, it may refer to a
FolderMonitor watched folder. You may wish to experiment with this to see how the _history attribute
gets expanded as the data stream goes through multiple metadata-aware processes.

The -metadata Yes command-line options, if provided, must be provided as the first two arguments. If
not provided, no metadata will be appended to the outputFile. It will be a simple direct copy operation.

Getting metadata processed
By default, Merge will not expect to have to handle metadata. It can be instructed to do so with the
command line (or more likely .prm file) option:

-metadata On

Note that the setting value is On (not Yes).

If that setting exists then Merge will note the existence of any metadata and will construct the _metaData
JavaScript object. That object will have the expected properties: _metaData._origFileName,
_metaData._source, _metaData._history, ... i.e. all the attributes that you see in the sample above. Do
note that the JavaScript object name is case sensitive and is _metaData, not _metaData.

Metadata for non-XML
Naturally, we expect that most data streams will be XML-based. However, this metadata, even though it is
in XML format, can be appended to any data stream. It will be temporarily removed and re-added as
necessary as the data flows through filters and whatnot.

Scripting | Script Functions

page 425

Script Functions
DocOrigin script extensions consist of a number of additional functions and JavaScript Objects that are
predefined in the JavaScript environment. Some of these additional features are only available within
certain programs (such as Merge) and are noted as such. Others are available for all DocOrigin programs.

Naming Conventions
In an attempt to reduce "name collision" between DocOrigin defined routines and ones you might write,
most DocOrigin functions or Objects use an underscore at the beginning of their name - such as
_message() or _chart.hBar(). This convention is also used extensively in the Merge handling of DOM
variables - see The Merge DOM section for more information.

Many of the DocOrigin extensions are provided under an umbrella JavaScript Object whose properties and
methods are used to access a common set of information. An example would be the _printer Object -
which has several methods (functions) such as _printer.getDocNum(), _printer.getPageCount() etc.
Another object might use a JavaScript property such as _auto.dataFile, or in the case of the Merge DOM -
 Field._value.

_auto (Merge only) - script equivalent of the form automatic variables.

_cache (Merge only) - save data between Merge events or documents.

_cacheInt(s) - (As of 3.0.003.28) returns cache variable 's' as an integer.

_cacheIncr(s) - (As of 3.0.003.28) increments cache variable 's' by one. Returns incremented value.

_chart (Merge only) - create a BarChart, PieChart, or LineGraph.

_data (Merge only) - access the Merge data file (read-only).

_dmessage (Windows only) - display debug messages to the user.

_document (Merge only) - access the Merge document that's being created.

_file - read and write files.

_isDJ() - is optimized DocOrigin script running?

_job - access command-line options and other job processing information.

_job.command - for command-line options

_job.filter - for filter options

_job.options - for job options set in a Job Name Discovery script or found on a <?DocOrigin ...?>
Processing Instruction. (See Job Name Discovery).

_locale - internationalized access to currency and date formatting.

_logf - write a message to the current logfile.

_logfEx - write a message to the current logfile with the severity level.

Scripting | Script Functions

page 426

_logPrintf - write a message to both the logfile and stdout (console).

_merge - invoke DocOrigin Merge.

_mergeEmbedded - do string substitution of field data.

_message (Windows only) - display a message to the user.

_metaData - access metadata embedded in data streams.

_os - access to select operating system functions.

_page (Merge only) - access Merge document current page.

_parseInt(s) - (As of 3.0.003.28) DocOrigin equivalent of JavaScript parseInt() but with no hex or octal
options - always assumes a decimal-based integer string even if it starts with zero(s).

_parser - convert comma/tab-delimited data and fixed record data.

_printer (Merge only) - access/modify printer driver settings.

_printf - write a message to stdout (console).

_profile - (As of 3.0.004.02) Access Profile/ini files.

_prompt - (As of 3.1.002.06) Prompt user for input.

_resolve - Do string substitutions in a provided template text string.

_run - run any program.

_runNoWait - run any program. Do not wait for the result.

_sendmail - send an email message.

_summary (Merge only) - access/store summary data for Merge summary processing.

_system (Merge only) - access to certain Merge options.

_toDOUnits - convert various measurements to internal DocOrigin units (microns).

_fromDOUnits - convert internal DocOrigin units (microns) to various common measurements.

_tracef - write a message to the Trace file. (See -trace)

_xml (Merge only) - save xml data from Merge -filter processing.

XmlFile Class - create xml output files.

XMLHttpRequest - used to send requests to an http website and get a response.

Predefined Variables
$X String Substitutions - all pre-defined $X-type variables.

Scripting | Script Functions

page 427

•
•
•
•
•
•
•
•
•
•
•
•
•

•

_auto - automatic field values
(Merge only)

The _auto object allows access to the set of automatic field values for Fields. These values can also be used
to embed data directly into text Labels - see the Auto_Embedded Fields delete section.

The _auto object is a pre-defined javascript object which has several pre-defined properties that you can
access (read-only). These property names are out-of-character in that they are case insensitive. But don't
try that anywhere else. Note also the aberration in that they do not start with an underscore. This is all in
aid of compatibility with their use as embedded and automatic fields.

Properties
_auto.dataFile - The full path and filename of the current data file.
_auto.dataName - The filename only (no path, no extension) of the current data file.
_auto.dataNameExt - The filename and extension (when specified) of the current data file.
_auto.dataPath - The file path of the current data file.
_auto.date - The current date, in the format yyyyMMdd.
_auto.datetime - The current date and time, in the format yyyyMMddHHmmss.
_auto.docNum - The current document number being processed. Numbering starts at 1.
_auto.formFile - The full path and filename of the current form file.
_auto.formName - The filename only (no path, no extension) of the current form file.
_auto.formNameExt - The filename and extension (when specified) of the current form file.
_auto.formPath - The file path of the current form file.
_auto.pageCount - The total number of pages within this document.
_auto.pageNum - The current page number within the document (also _auto.PN), atypically case-insensitive.

This is NOT a property, per se, of the _auto object, but rather a function, despite the lack of (), that
reports the page number of the current global object, i.e. the object in which the script is defined. It
makes absolutely no sense to use this on the form object itself. The form object has no "current page"
context and can report only 0. You would be better off learning to use this._pageNumber which
expresses more clearly what you are getting the current page number of. Note that page numbers are
not defined until the Pagination Completed event. They are of no use at Data Merged time.

_auto.time - The time that Merge began running, as a string in the format HHmmss.

Many of these values can also be accessed using other similar functions within DocOrigin.

Scripting | Script Functions

page 428

_cache - scripting object
The _cache object provides a way to store information at various points in a Merge run and retrieve it later
on. The _cache data does NOT disappear between Merge events nor between Merge documents.

Stored data is simply associated with a given name.

_cache variables and their values are often defined via the -cache command-line option.

In JavaScript, you can assign a value to a cache variable either by directly assigning it to the variable as in:

_cache.foo = "some value";

or by using the _cache.set() function as in:

 _cache.set("foo", "some value");

Similarly, you can retrieve values from _cache by:

var value = _cache.foo; // sets value to "some value"
var value2 = _cache.get("foo"); // sets value2 to "some value"

Embedded references can be made to _cache variables via the syntax [!Cache name], as in [!Cache foo]
using the above example.

Note and note well! _cache variables are always stored as strings. A side effect of that is that the +
operator in javascript implies concatenation, not addition. It's likely that you may want to make liberal use
of the construct parseInt(_cache.name). _cache variables are often used in counting operations; if you use
the standard JavaScript notation of ++ that is recognized as an integer operation and the _cache variable
will be automatically converted to a number before being incremented and then stored back as a string.

_cache.counter = 0; ...
_cache.counter++;

Advanced _cache usage
Sometimes you wish to cache arrays of values. There are various techniques that you could use. The
following is a rarely used method. It's rare because people rarely use _cache.set("name") when they can
simply use _cache.name. However, there is the further option of:

_cache.set("name", someValue, index);

which lets you supply an array index, hence permitting the creation of an array of values. Naturally, there is
the corresponding:

_cache.get("name", index);

to retrieve an array element.

Scripting | Script Functions

page 429

•
•
•
•
•

Functions
_cache.logf() - dump _cache content to log file.
_cache.get(name, [index]) - get value of _cache property name.
_cache.set(name, value, [index]) - set _cache property name to value.
_cacheInt(name, [index]) - returns _cache property name as an integer.
_cacheIncr(name, [index]) - increments _cache property name by one. Returns incremented value.

See Also

Auto/Embedded Fields -cache - command-line option

Scripting | Script Functions

page 430

•

•
•
•

_chart - draw barcharts and piecharts
(Merge only)

Merge enables you to create barcharts, piecharts, and line graphs and embed them into the documents.
The data can be embedded in the xml data stream or created dynamically using javascript. The charts are
created using the _chart javascript routines within Merge.

The _chart routines draw within the area of (typically) a Group object that has been drawn on the
document in Design. The Group object defines the physical size and position of the chart. The chart is
automatically scaled to fit within the Group (actually within the margins of the Group).

A simple chart description might be coded as follows:

var data = [['Year', 'Sales'], [2001, 1000], [2001, 1700], [2002, 2500]];
_chart.vBar(data, null);

Results in:

Usage
All charts are generated within Merge. They use standard Merge objects including fonts and various filled
objects. They are NOT raster images.

Charts are created by calling one of the _chart methods listed below. Each takes a data parameter (see
_chart Data) and a formatting options parameter (see _chart Display Options). The data is either generated
by your javascript program or by reading from an external file or by loading from the Merge data stream.

Functions
_chart.barLine(data [, options]) - draw a barchart using vertical bars for 1st data set and line graphs for all other
data sets.
A combination of _chart.vBar() and _chart.line() functionality.
_chart.hBar(data [, options]) - draw a barchart with horizontal bars.
_chart.line(data [, options]) - draw a line graph.
_chart.pie(data [, options]) - draw a piechart.

Scripting | Script Functions

page 431

• _chart.vBar(data [, options]) - draw a barchart with vertical bars.

Scripting | Script Functions

page 432

_chart Data
The _chart routines all use a common method of passing data to the various routines. Data is passed to the
charting routines as a javascript array of data sets. For example:

var data = [
 ['Year', 'Estimate', 'Actual']
 , [2001, 1.5, 2]
 , [2002, 10, 11]
 , [2003, 1, 5]
 , [2004, 1.5, 2]
 , [2005, 10, 11]
 , [2006, 1, 5]];

In the above example, the variable 'data' has been assigned a series of 6 data sets (rows) plus a header
row. Each data set is itself an array of names and/or values. The first row is a header. It must have the
same number of array elements as each of the following data rows. This header row lists the names to be
given to each column of data - in this case the first column is a 'Year', the second is called 'Estimate', and
third is 'Actual'. These names may be used when labeling legend data.

The values in the first column are the primary data values. Note that these are considered to be the name
of the row and can be either a number or a string (2001 and '2001' mean the same thing). All other data
should be numeric.

For a simple barchart with vertical bars the primary data represents the values along the bottom X-axis of
the chart. The second and successive columns reprent the Y-axis height of the bars. A rotated barchart
(vBar) would display the primary data along the vertical (left) side of the chart, with bars extending
horizontally. In a piechart the primary data is the name of each pie slice - the second column value
represents the slice size.

The primary data values - 2001, 2002, etc. - are used as labels for the primary axis of barcharts and line
graphs. They can also be used to label individual slices of a pie chart.

Barcharts and line graphs allow multiple data columns (columns 2 and up). They produce sets of bars or
multiple overlapping lines. Piecharts only take a single data column.

Charting data should always be positive values.

Creating Data
The simplest way to provide data is by directly creating a javascipt array in the appropriate structure (see
above). Data can also be extracted from a Merge document's data stream and loaded into an appropriate
data array. This can be done using the _data._loadAsArray() function - see the _data functions. For example,
consider an xml data file with the following data somewhere within it:

<usageHistory>
 <period>
 <month>Month</month>

Scripting | Script Functions

page 433

 <usage>Usage</usage>
 </period>
 <period>
 <month>Jan</month>
 <usage>139</usage>
 </period>
 <period>
 <month>Feb</month>
 <usage>148</usage>
 </period>
 <period>
 <month>Mar</month>
 <usage>119</usage>
 </period>
 ...
</usageHistory>

The following script could be used to load that data and display a barchart of the data.

data = _data._loadAsArray("usageHistory");
_chart.vBar(data);

Resulting in:

It was awfully nice of the data provider to provide an entry with the data name information. i.e.

<period>
 <month>Month</month>
 <usage>Usage</usage>
</period>

Quite often that leading entry is not provided. You can handle that by providing the first set of "name" data
right in the _loadAsArray function call. In this example you would use:

data = _data._loadAsArray("usageHistory", ["Month", "Usage"]);
_chart.vBar(data);

The optional second argument to _loadAsArray is an array giving the names of the data being loaded. It
must have the same number of elements as is in the loaded data.

Scripting | Script Functions

page 434

Alas, there has been a bug in this functionality until 3.1.001.08. You could use the second argument
but you may as well supply simply [] (an empty array), and following the _loadAsArray call, do an
explicit set of the [0] element. Per this example:

 data = _data._loadAsArray("usageHistory", []); // pre 3.1.001.08 workaround
 data[0] = ["Month", "Usage"]; // set the real [0] entry.
 _chart.vBar(data);

By using the second argument, room was provided in the array for the [0] element, but it was not
loaded properly. Fixed in 3.1.001.08.

Scripting | Script Functions

page 435

•

•

•

•

_chart Display Options
The _chart routines for barcharts, piecharts, and line graphs all use a common set of display options. These
allow you to customize the appearance of the individual charts.

All options have a default setting that is noted below. You only need to explicitly set options when you wish
to override these default settings.

The Options object
All options are defined as properties of a javascript object - for example:

var options = {
 BarGap: '.15in',
 LegendFont: {bold:true, size:10},
 colors: ['orange', 'coral', '#FF0000', 'brown']
};

Each option - such as LegendFont or colors - is followed by either a single value, an array of values
surrounded by [brackets], or a set of sub-options enclosed in {brackets}.

Measurements - gaps between objects, thickness etc. use standard DocOrigin script units - an integer size
(in microns) or a string with units such as 250000, '.25"', '.25in', '.25cm' etc.

Colors are standard DocOrigin script colors - either a 6digit hex RGB code or one of the default color
names. See the DocOrigin Colors section for more information.

Note that all option names - BarGap, ChartGap, etc. are case-INSENSITIVE - BarGap, bargap, and BARGAP
are all acceptable.

The values next to each option below is the default value if not explicitly specified.

AutoZero: false
As of 3.0.002.05, when set to 'true' barcharts will always start to 0.0 rather than their minimum value. Or, more
precisely, charts whose minimum value is greater than zero will instead be drawn with zero as the minimum.
charts with a maximum value less than zero will be drawn with zero as the maximum. Only applies to barcharts.
You may also explicitly set the min/max values using the MinValue and MaxValue options.

BarGap: '.15in'
This is the space between each set or group of bars on a barchart.

ChartGap: '.05in'
ChartGap is the "margin" around the actual chart or graph. This space separates the chart from the X-axis and Y-
axis labels and from the Legend if it is present. You can set all 4 gaps using the ChartGap setting, or set them
individually using ChartGapBottom, ChartGapTop, ChartGapLeft and ChartGapRight.

Color: ['red', 'green', 'blue', 'yellow', 'magenta', 'cyan', 'orange', 'lightgreen', 'lightpink', 'lightblue']
This sets the colors of bars, pie slices, or lines (depending on the type of chart). Colors are used sequentially. If
more colors are required than have been defined the system will automatically re-use the defined list of colors
but make them slightly darker. You can also use the Hex color codes such as

Scripting | Script Functions

page 436

•

•

•

•

Colors:['#B467DC','#007CDC'],

You can also set Color:'grayscale' to cause only shades of gray to be

displayed.

ColorColumn: 0
As of 3.1.001.12, for barcharts. Specify a column in the data array (first data value is column 1) which specifies
the bar color for each row of data. So this specifies a particular bar color for each bar, as opposed to the normal
assigning different colors to each column of data in a multi-column data set.

The number in column 'ColorColumn' is an index into the Color array above. So for instance a value of 2 in the
ColorColumn would cause that bar to be displayed in blue (color 0 is red, color 1 is green, color 2 is blue etc.)

See also the LegendLabel command which allows you to specify what each of these colors means.

DatasetNames: {start:1, every:1, tickStart:1, tickEvery:1}
As of 3.1.001.04, this setting controls how the main axis of data records is labeled. This is the bottom axis of a
vertical barchart or line chart, or the left axis of a horizontal barchart. You can control which axis labels are
displayed and which are left out. This can be useful if the labels tend to run together or overlap due to space
constraints.

As of 3.1.001.07, the tickStart/tickEvery settings affect the small tick marks displayed on the bottom axis of Line
charts. This is of use when there are many data samples and the tick marks start to blur together.

For example, if you have several data records labeled '2005', '2006', '2007', etc., you can specify that every 3rd
label starting at 2006 be displayed, by setting

DatasetNames: {start:2, every:3}, // labels 2006, 2009, 2012, etc.

Or set tick marks every 5 data items

DatasetNames: {tickStart:1, tickEvery:5}, // tick marks every 5th item.

DrawEdges:
Should bar edges be drawn? If true the border of bars in a barchart will be outlined in black. If false they will not
be. When drawing normal barcharts, this setting default to true. When drawing 3D barcharts, this setting defaults
to false. Note that drawing the edges of a 3D barchart may be visually incorrect if the bars overlap.

Feature: null
Used with piecharts to highlight or "feature" selected pie slices. This is done by offsetting the slice outward from
the center of the pie chart by a distance of FeatureOffset. To feature a single data item, set Feature to the data
item name. If you want more than one item featured, set Feature to an array of data item names. For example:

Feature: '2003', // features single data item named '2003'

Feature: ['2003', '2006', '2007], // feature several items

Scripting | Script Functions

page 437

•

•

•

•

•

•

•

•
•

•
•
•

•

•

If you want all items featured, set Feature to '*'.

Barcharts will also allow Feature values. The barchart FeatureFont will be

used - typically to change the color.

FeatureColor: (none)
If Feature: above is set and FeatureColor is set, a barchart will display the bar in this color. Use this to highlight
one or more bars in a barchart. If not set, the bar will be in its normal color. See also FeatureFont.

FeatureFont: {size:8, face:'Arial', bold:false, italic:false, color:'black'}
This is the font settings used to label the featured data specified in the Feature setting above.

FeatureOffset: 0
Explicitly specify the distance to offset a featured pie slice from the center of the piechart. If this value is 0 (zero)
a reasonable offset is automatically applied.

GridColor: 'black'
This is the color of any grid lines that are drawn on barcharts or line graphs.

GridThickness: '.01in';
This is the line width for any grid lines that are displayed.

LegendFont: {size:8, face:'Arial', bold:false, italic:false, color:'black'}
This font is used for all Legend text.

LegendFormat: '[label]'
The text displayed next to each color square on the legend is formatted according to this setting. Formatting is
done by taking the LegendFormat text string and replacing any text displayed in [square brackets] with the
named data or value. For example, setting LegendFormat: "[label]" will display the label text associated with the
specified item. LegendFormat: "[data]" will display the actual data value. Not all substitutions are available or
make sense for every type of chart. The following substitution parameter are available:

[data] - the actual data value represented by the legend color.
[data format] - as above, but with an explicit format specification.
The format part is an actual number formatting designation. It can be a standard C-like format string
such as %f, %f6.2, %d, etc. or "D", "I" or "$" to cause formatting using the current Locale of the chart
canvas object. "D" formats as a decimal number, "I" as an integer, and "$" as currency.
[label] - the data name.
[percent] - for piecharts, the percentage represented by an individual pie slice.
[percent1] - same as [percent] but displayed to 1 decimal point.

Note that if LegendFormat is set to null a legend will not be displayed.

LegendGap: '.05in'
The vertical space separating legend items.

LegendLabel: ['name0', 'name1', 'name2', ...]
As of 3.1.001.12,
Assign text to be used on each legend entry. The array of names must correspond to the Color array.

Scripting | Script Functions

page 438

•

•

•

•

•

•

•

•

•

When using the ColorColumn option, this option is required if you want to display a Legend.

LegendSwatchSize: '.2in'
The size (width and height) of the color swatch drawn as part of the Legend.

LineThickness: ['.02in']
For LineGraphs this is the thickness of each line drawn. This must be an array with one entry for each data set
(line) that is drawn. If there are more graph lines than settings, the first value in this array will be repeated for all
missing settings.

LineStyle: ['solid', 'dash']
For LineGraphs a list of line styles for each data set (line) to be drawn. Choose from styles of 'solid', 'dash', 'dot'
or 'dotdash'.

MarkerColor: ['black']
For LineGraphs you can specify that a marker symbol be drawn at each data point. MarkerColor is the color of
that marker. This is an array with one entry for each data set (line) that is drawn. If there are more graph lines
than settings, the first value in this array will be repeated for all missing settings.

MarkerSize: ['.05in', '.08in']
For LineGraphs - the size (width and height) of the marker symbols. This is an array with one entry for each data
set (line) that is drawn. If there are more graph lines than settings, the first value in this array will be repeated for
all missing settings.

MarkerStyle: ['box', 'star']
For Linegraphs - the style of marker symbol to display at each data point. Choose from style of 'none', 'box',
'star', 'openbox', 'diamond'or 'vline'. This is an array with one entry for each data set (line) that is drawn. If there
are more graph lines than settings, the first value in this array will be repeated for all missing settings.

MaxValue:
As of 3.0.002.05, explicitly set the value of the "top" or maximum range of the data values displayed on a
barchart. By default, if this value is not set, the topmost position on the barchart is defined by the maximum
data value in the data array. This option allows you to override that value. The AutoZero option can also
influence the range of values of a barchart.

MinValue:
As of 3.0.002.05, explicitly set the value of the "lower" or minimum range of the data values displayed on a
barchart. By default, if this value is not set, the lower position on the barchart is defined by the minimum data
value in the data array. This option allows you to override that value. The AutoZero option can also influence the
range of values of a barchart.

Pattern: 'None'
Color bars or pie slices can be displayed as crosshatch styles rather than solid colors. (This may be desirable on
monochrome printers). If a single pattern is specified it will apply to all colors. If an array of pattern names is
specified it will be applied in sequence to each of the data colors.

Pattern choices are 'None', 'Horizontal', 'Vertical' 'Crosshatch', 'Diagonal', 'ReverseDiagonal'and
'DiagonalCrosshatch'.

Scripting | Script Functions

page 439

•

•

•

•

•

•

•

•

•

•

•

•

PieRound: true
If set to 'true' pie charts will be round and scaled to fit the available space to the maximum. If set to 'false' the
pie chart will be elliptical - stretched horizontally and vertically to fit the available space.

PieStartAngle: 0
For piecharts, this specifies where the first data item starts visually on the chart. This is an angle measured in
degrees clockwise from the top or positive Y position.

RangeFormat: null
The left Y axis of a vertical barchart or the bottom X axis of a horizontal barchart is known as the Range axis. The
numerical values displayed on these axes are formatted according to the RangeFormat. Null indicates a default
integer/decimal number in standard North American dot-for-decimal notation. You can also set RangeFormat to
an explicit c-like format such as "%f6.2". Set RangeFormat to "$" to format as currency in the Locale of the chart
canvas object. Set RangeFormat to "D" to format as a decimal number in the Locale of the canvas object. Set
RangeFormat to "I" to format as an integer number in the Locale of the canvas object.

ShowBarValue: false
As of 3.1.001.04, set to true to display text value of barcode over top of the bar. ValueFormat must also be
defined. Note - the text will NOT be displayed if it doesn't fit inside the bar. You can change the font size etc.
using the ValueFont setting.

ShowBarValueAtEnd: true
As of 3.1.001.04, set to true to display text value of barcode at the end of the bar (above it for vBar, to the right
for hBar). ValueFormat must also be defined.

ShowGrid: true
Should grid lines be drawn on the chart or graph?

ShowXAxis: true
As of 3.1.001.04, set to false to suppress displaying any X-axis (bottom of chart) labeling.

ShowXTicks: true
As of 3.1.001.12, whether to display small Tick marks above the labels on the X (bottom) axis. For backward
compatibility, vertical barcharts have a default of false - and do not show tick marks.

ShowYAxis: true
As of 3.1.001.04, set to false to suppress displaying any Y-axis (bottom of chart) labeling.

ShowYTicks: true
As of 3.1.001.12, whether to display small Tick marks beside the labels on the Y (left) axis. For backward
compatibility horizontal barcharts have a default of false - and do not show tick marks.

Sort: false
Should the data items be sorted? Sorting will be from the largest to smallest value. If the data set has more than
one data value (multi-line charts or multi-bar charts) only the first data "column" is sorted.

Stacked: false
For barcharts with multiple data values for each set of bars you can choose for each to be a separate adjacent
bar or that all values be stacked in a single bar.

Scripting | Script Functions

page 440

•

•

•

•
•

•
•
•

•

•

•

•

SuppressColumn: []
As of 3.1.001.09, when you have multiple columns of data in the data array, you can cause one or more to NOT be
charted using this option. Supply an array of column numbers of the data array that should not be displayed. For
example [2,3] will remove the 2nd and 3rd column of data. Use this option when the same dataset might be used
for different charts, or removal of a column of data is inconvenient.

ValueFont: {size:8, face:'Arial', bold:false, italic:false, color:'black'}
This is the font used to display the actual value of each bar, pie slice, or line data point.

ValueFormat: null
String to be displayed above each bar in a barchart, or within each slice of a piechart, or above each data point in
a line graph. Formatting is done by taking the ValueFormat text string and replacing any text displayed in
[square brackets] with the named data or value. For example, setting
ValueFormat: "[data]" will display the data value associated with the specified item.

Not all substitutions are available or make sense for every type of chart. The following substitution parameter
are available:

[data] - the actual data value represented by the bar, pie slice, or line data point.
[data format] - as above but with an explicit format specification.
The format part is an actual number formatting designation. It can be a standard C-like format string
such as %f, %f6.2, %d, etc. or "D", "I" or "$" to cause formatting using the current Locale of the chart
canvas object. "D" formats as a decimal number, "I" as an integer, and "$" as currency.
[label] - the data name.
[percent] - for piecharts, the percentage represented by an individual pie slice.
[percent1] - same as [percent] but displayed to 1 decimal point.
Note that if ValueFormat is set to null no text will be displayed. Note also that if the text doesn't fit totally
inside a barchart bar or a piechart slice, it will NOT be displayed.

X3D: 0
If non-zero this sets the amount of "shadow" or 3D effect in the X (horizontal) direction. A typical setting might
be ".3in". See Y3D as well. Barcharts are drawn as 3D bars when either X3D or Y3D are non-zero.

XFont: {size:8, face:'Arial', bold:false, italic:false, color:'black', angle:0}
This is the font used to annotate the X axis along the bottom of barcharts and line graphs. Note that for Vertical
barcharts and Line charts you can specify a rotation angle for the text in the range of -90 to 90 degrees.

Y3D: 0
If non-zero this sets the amount of "shadow" or 3D effect in the Y (vertical) direction. A typical setting might be
".1in". See X3D as well. Barcharts are drawn as 3D bars when either X3D or Y3D are non-zero. Piecharts are drawn
as 3D using only Y3D.

YFont: {size:8, face:'Arial', bold:false, italic:false, color:'black'}
This is the font used to annotate the Y axis along the left side of barcharts and line graphs.

Scripting | Script Functions

page 441

Scripting | Script Functions

page 442

Scripting | Script Functions

page 443

_chart Margins and Spacing
The spacing of various objects within a chart can be modified by using a variety of settings. For example,
consider this basic barchart:

This chart uses the default setting for charts and is displayed inside a default Group object whose margins
are 0.

Group Object Margins
By introducing a margin setting on the object (typically a Group) that contains the chart, you can change
the amount of space between the borders of the group and the drawing. Of course, each margin can be set
individually.

ChartGap settings
The ChartGap (or individual ChartGapTop, ChartGapLeft, etc.) settings define a bit of space between the
actual chart and the surrounding captions and legends. Note for instance how the legend is separated
from the chart grid. Also the captions at the bottom are a bit further down, and the left captions are a bit

Scripting | Script Functions

page 444

further away from the actual bars. This of course shrinks the bars slightly in order for it all to appear inside
the fixed containing Group. The default ChartGap is 0.05".

BarGap setting
The BarGap setting changes the amount of space allotted between each set of bars and the ones next to
them. The gap gets smaller, and the bars themselves get slightly wider. The default BarGap is 0.15".

LegendGap setting
The LegendGap is the space between the two colored Legend rectangles. The default LegendGap is 0.05".

Scripting | Script Functions

page 445

Scripting | Script Functions

page 446

_chart.barLine
(Merge only)

This method draws a barchart with overlaid line graphs.

Syntax
_chart.barLine(data [, options])

Parameters
data is a script array of data points to be charted. See _chart Data for formatting details. options is a script
object whose properties define various presentation options. See the _chart Display Options for details.

Returned Value
true if successful, false if an error occurred.

Description
The data array contains a list of data sets to be drawn on the chart. The first data set (column) is drawn as a
series of vertical bars. All other data columns create line charts that overlay these bars. See _chart.hBar
and _chart.line for details on their construction and options.

The _chart.barLine() routine must be called from a form "container" object - typically a Group object. The
chart is drawn within this object. Bar widths, scaling etc. are all automatically calculated so that the chart
completely fills the container object.

See the _chart Display Options for details on how to modify colors, legends, fonts, etc.

Example

options = {
 MarkerStyle: ['none']
};

var data = [
['Month', 'Electricity (kWh)', 'Last Year', 'Average']
, ['SEP', 440, 420]
, ['OCT*', 421, 430]
, ['NOV', 469, 445]
, ['DEC*', 460, 440]
, ['JAN', 386, 430]
, ['FEB*', 423, 425]];

var avg = 0;
for (i=1; i<data.length; i++) {
 avg += data[i][1];

Scripting | Script Functions

page 447

}

avg = avg/(data.length-1);

for (i=1; i < data.length; i++) {
 data[i][3] = avg;
}

_chart.barLine(data, options);

Results in:

This chart shows a set of bars representing monthly electricity usage. The previous year's data is shown as
a green line. The blue "Average" line is computed and added using a script. Colors, fonts, and other options
are controlled by the options parameter - see _chart Display Options for details.

Scripting | Script Functions

page 448

_chart.hBar
(Merge only)

This method draws a barchart with a series of horizontal bars.

Syntax
_chart.hBar(data [, options])

Parameters
data is a script array of data points to be charted. See _chart Data for formatting details. options is a script
object whose properties define various presentation options. See the _chart Display Options for details.

Returned Value
true if successful, false if an error occurred.

Description
The data array contains a list of data sets to be drawn on the chart. The first data set (column) is drawn as
a series of vertical bars. All other data columns create line charts that overlay these bars. See _chart.hBar
and _chart.line for details on their construction and options.

The _chart.barLine() routine must be called from a form "container" object - typically a Group object. The
chart is drawn within this object. Bar widths, scaling etc. are all automatically calculated so that the chart
completely fills the container object.

See the _chart Display Options for details on how to modify colors, legends, fonts, etc.

Example

options = {
 MarkerStyle: ['none']
};

var data = [
['Month', 'Electricity (kWh)', 'Last Year', 'Average']
, ['SEP', 440, 420]
, ['OCT*', 421, 430]
, ['NOV', 469, 445]
, ['DEC*', 460, 440]
, ['JAN', 386, 430]
, ['FEB*', 423, 425]];

var avg = 0;
for (i=1; i<data.length; i++) {
 avg += data[i][1];

Scripting | Script Functions

page 449

}

avg = avg/(data.length-1);

for (i=1; i < data.length; i++) {
 data[i][3] = avg;
}

_chart.barLine(data, options);

Results in:

This chart shows the use of two parallel sets of bars for each Y-axis data point. Colors, fonts, and other
options are controlled by the options parameter - see _chart Display Options for details.

Scripting | Script Functions

page 450

_chart.line
(Merge only)

This method draws a horizontal line graph.

Syntax
_chart.line(data [, options])

Parameters
data is a script array of data points to be charted. See _chart Data for formatting details. options is a script
object whose properties define various presentation options. See the _chart Display Options for details.

Returned Value
true if successful, false if an error occurred.

Description
The data array contains a list of data sets to be drawn as overlapping horizontal line graphs. The
_chart.line() routine must be called from a form "container" object - typically a Group object. The chart is
drawn within this object.

Lines are drawn horizontally from the left to right on the chart. Data is provided as a series of primary (X-
axis) data sets - each with one or more data values (Y-axis). Each X-axis data set creates a single connected
line graph.

See the _chart Display Options for details on how to modify colors, legends, fonts, etc.

Example

var data = [['Date', 'LBS/HR', '2nd LBS/HR']
, [2006, 513, 500]
, [2007, 565, 550]
, [2008, 683, 800]
, [2009, 768, 750]
, [2010, 584, 400]
, [2011, 727, 450]
, [2012, 640, 500]
, [2013, 809, 550]];
options = {
 chartgap:100000
 , LegendFont:{Size:12, Bold:true}
 , XFont: {Size:10, Bold:true}
 , LineThickness: [20000, 50000]
 , LineStyle: ['Dash', 'Dot']
 , MarkerStyle: ['star', 'openbox']

Scripting | Script Functions

page 451

 , MarkerColor: ['orange', 'blue']
 , Markersize: [100000, 50000]
 , ValueFont :{Size:10, Bold:true }
};
_chart.line(data, options);

Results in:

Scripting | Script Functions

page 452

_chart.pie
This method draws a piechart for a set of data.

Syntax
_chart.pie(data [, options])

Parameters
data is a script array of data values to be charted. See _chart Data for formatting details. Note that, unlike
barcharts, the piechart can contain only a single set of data. These values must all be positive values.
options is a script object whose properties define various presentation options. See the _chart Display
Options for details.

Returned Value
true if successful, false if an error occurred.

Description
The data array contains a list of data sets to be drawn on the piechart. The _chart.pie() routine must be
called from a form "container" object - typically a Group object. The chart is drawn within this object. Bar
widths, scaling, etc. are all automatically calculated so that the chart completely fills the container object.

Each data element consists of a Name and a data Value. The pie chart represents the proportion or
percentage of the total of all Values that each element represents. Each pie "slice" can be color-coded or
distinctly shaded. Selected slices can also be "featured" - causing them to be offset from the center of the
chart to accentuate them. Data is provided as a series of primary (Y-axis) data sets - each with one or more
data values (X-axis).

See the _chart Display Options for details on how to modify colors, legends, fonts, etc.

NOTE - Pie charts can be made "3D" by setting the Y3D value to create depth to the chart. It is suggested
that PieRound also be set to false to create an oval piechart.

Example

var data = [['Year', 'Data']
, [2001, 1.5]
, [2002, 10]
, [2003, 1]
, [2004, 6.5]
, [2005, 5]
, [2006, 4]];

var options = {
 chartgap:250000,

Scripting | Script Functions

page 453

 colors:['orange', 'coral', 'greenyellow', 'brown', 'lightpink', 'turquoise'],
 legendfont:{bold:true, italic:true},
 sort:true,
 valueformat:'[percent]',
 feature:['2002', '2005'], pieoffset:'2mm',
 featurefont:{bold:true, color:'red'}
};

_chart.pie(data, options);

Results in:

Scripting | Script Functions

page 454

_chart.vBar
This method draws a barchart with a series of vertical bars.

Syntax
_chart.vBar(data [, options])

Parameters
data is a script array of data points to be charted. See _chart Data for formatting details. options is a script
object whose properties define various presentation options. See the _chart Display Options for details.

Returned Value
true if successful, false if an error occurred.

Description
The data array contains a list of data sets to be drawn on the barchart. The _chart.vBar() routine must be
called from a form "container" object - typically a Group object. The chart is drawn within this object. Bar
widths, scaling etc. are all automatically calculated so that the chart completely fills the container object.

Bars are drawn vertically. Data is provided as a series of primary (X-axis) data sets - each with one or more
data values (Y-axis). Each X-axis data set creates a cluster of one or more vertical bars for that primary
value.

See the _chart Display Options for details on how to modify colors, legends, fonts, etc.

Example

var data = [['Year', 'First', 'Second']
, [2001, 1.5, 2]
, [2002, 10, 11]
, [2003, 1, 5]
, [2004, 1.5, 2]
, [2005, 10, 11]
, [2006, 1, 5]];

_chart.vBar(data);

Results in:

Scripting | Script Functions

page 455

This chart shows the use of two parallel sets of bars for each X-axis data point. Colors, fonts, and other
options are controlled by the options parameter - see _chart Display Options for details.

Scripting | Script Functions

page 456

_data - Merge XML Data DOM
These properties allow the scripter read-only access to the Data DOM (As opposed to the Form or
Document DOM). The Data DOM represents the XML file that is read by Merge and whose data is merged
into the document. The _data DOM represents the data for each single document in turn, not the entire
data file all at once.

Property Description

_data This is the root object of the Data DOM. It is not yet populated at Start-
of-Job, but is at Start-of-Document.

._value, .value Return the raw (text string) value of a data item in the XML data file.
This is the only Data DOM attribute for which one can leave off the
leading underscore (_), though that is not recommended as it is quite
possible that a data file will have a <value> element in it.

._name Return the name of the current Data DOM object, i.e. the tag name of
an XML element.

._fullName Return the fully qualified name of the current Data DOM object, all the
way from _data down to this object's basic name – all in dotted
notation. E.g. _data.Document.Invoice.Header.CustomerId.

._parent, ._firstChild, ._nextSib
ling, ._prevSibling, ._nextNode

These allow the scripter to walk the Data DOM in a logical fashion. Each
function returns a Data DOM object with which one could
access ._value, ._name, ._fullName, or one of these traversal
functions.

dataDomObject.ancestor(
name)

Find an ancestor (not necessarily just an immediate parent) of a given
name. (As of 3.2.001.03)

dataDomObject.descendant(
name)

Find a descendant object with a given name. (As of 3.2.001.03)

dataDomObject.childNamed(
name)

Find an immediate child (not further down descendant) of a given
name. (As of 3.2.001.03)

dataDomObject.name For any Data DOM object one can get the object that represents one of
its children by using that child's tag name. tagName is case-sensitive.

dataDomObject.attribute("
attrName")

Get the value of the named attribute (or "" if it doesn't exist) for this
data node. attrName is case-sensitive.

Scripting | Script Functions

page 457

It's a bit of a philosophical debating point as to whether the above are properties or functions / methods.
They certainly act like properties in that they give the appearance of a static value being made available for
the asking, even though background processing may have to occur to 'come up with' the answer. The
following are definitely functions.

Function Description

_loadAsArray(datafield,
[firstrow])

Load up a series of values in the data file and represent them as an
array. The optional firstrow is an array of column names for the
subsequent data - usually used when loading data for a chart. See
_chart Data for an example of its usage.

_loadAsObject(datafield) Load up a single structure in the data file and represent it as a
JavaScript object. See the example below.

_loadAsObject Example
Suppose your data file had this construct somewhere in it:

<ShipTo>
 <CompanyName>Perfect Printers</CompanyName>
 <Address1>425 Lansing Drive</Address1>
 <Address2>Moline, Illinois</Address2>
 <Address3>USA 61265</Address3>
 <Address4>Tel:800.555.2323 Fax:309.762.4411</Address4>
</ShipTo>

You could use: var o = _data._loadAsObject("ShipTo"); to load up that structure into a JavaScript
object. We could print it out with: _logf("'%s'\n", o) and we'd see these values (manually split into
multiple lines here for display purposes).

'{CompanyName:Perfect Printers, Address1:425 Lansing Drive, Address2:Moline, Illinois,
 Address3:USA 61265, Address4:Tel:800.555.2323 Fax:309.762.4411}'

Notes

Notes

1. _data does not exist yet at Start-of-Job. It does by Start-of-Document.
2. If you really want to read the raw XML data file you can always:

var fp = _file.fopen(_job.command.data, "r");
while (true) {
 line = fp.fgets();

Scripting | Script Functions

page 458

See Also

XML Data Files

 if (line == null) break; // end-of-file
 // do whatever you like
}
fp.fclose();

That's not a recommended course of action, just advising of an available 'port in a storm' if you
become desperate. It might be used as a way to get at header/control information that occurs
outside of the <Document>...</Document> boundaries. Of course, you could also use the XmlInput
Class.
3. In a field's event you can refer to this._dataSource to get the _data DOM object that was used
to populate the field. That is a generality that should be taken with a grain of salt. Some fields are
populated with script. Some other fields, likely in error, have no associated data file element.
Beware of null.

Scripting | Script Functions

page 459

_document
This is the Document Object Model (DOM) object for the current document being processed. It enables
access to field data and form field attributes. It contains a hierarchy that reflects the design's nested
structure of pages, containers, panes and groups with their fields and text labels, and it also reflects the
various instances of those objects created as a result of merging data into the form design. For example,

_document.main_pane.header_pane.customer_name._value

The DOM is specific to the current combination of form design and data, and it reflects the current design's
structure.

_document reflects the top-level object in the document, i.e. the form object.

One thing to be careful of is that if a pane is optional and the data stream does not force its
instantiation, then a reference to that pane or to objects within that pane will result in a runtime
error. When scripting you should keep the possibility of 'non-existence' of panes in mind. See
domObj.DOM and domObj.DOMValue.
Another thing is that you will have multiple instances of the same pane and in those cases you
MUST take care to specify which occurrence you wish to reference. (See also Simplified SOM
references (TODO))
Remember that when pagination occurs (and for all events after that) there is an even greater
likelihood of multiple occurrences of panes, even ones not marked as being "Allow Multiple". This
occurs because page headers and footers may have been injected multiple times.
And it also occurs if a pane has had to be split across pages. In that case, the pane object will exist
in the DOM on both (or more) pages, with a part of the pane on each page. Typical error messages
in such cases are ScriptExtendedSyntax and DJ-GetResolveValName.
Use of this._parent, this._ancestor() and this._descendant() can relieve a lot of the "have to know
the occurrence number" headaches. Another technique is to stuff a value of interest, using a local
reference, like this._value, into an _cache variable and then later referencing that _cache variable.
The following script can help you understand the current document structure:

for (var o=_document; o; o=o._nextNode) {
 if (pn._type == "Pane") _logf("%s\n", o._fullName);
}

Note that the results of that will not be the same at all events so be sure to explore the document
structure in the event where you are puzzling out an issue.

Scripting | Script Functions

page 460

DOM Object Attributes
Fields and text labels have values and attributes (font, color, margins, and so on) which can be accessed
and modified in script by specifying the name of the field or label followed by a dot followed by the
attribute name. The value of the field or label is accessed as just another attribute — named _value.

The DOM properties topic (See DOM Properties) identifies the many, many properties that are available for
reference. In that list the attributes are marked as return or set. return indicates that the attribute value
may be accessed from script, while set indicates that it may be modified using script. There are versions of
these attributes which do not have the leading underscore(_) in their names. However, the use of the
leading underscore is highly recommended so as to avoid potential conflict with the object names in a
document.

Scripting | Script Functions

page 461

Other DOMs
See also the _page DOM. It is rarely used and reflects only a page subset of the overall _document DOM.

Note that the _data DOM is a completely different DOM, reflecting the XML data that is applied to the form
design.

Scripting | Script Functions

page 462

_document.abandon
(Merge only)

Don't produce output for this document.

Syntax
_document.abandon()

Parameters
None.

Returned Value
None.

Description

_document.abandon is almost certainly used with _document.reprocess. (See _document.reprocess)

This function sets an internal flag such that at the end of the current Merge processing stage, Merge will
give up on this document's data set and move on to the next one unless _document.reprocess was also
called.

This may be desirable, without reprocess, if validations detect absurdities in the data. Truly that should not
be the presentation software's job, but rather the job of the application producing the data. Perhaps, as
some last-second failsafe, though.

Where it is more likely applicable, and even then only rarely, is in taking action based on information that
only the presentation software (Merge) knows. For the most part that is the page count. See the example.

The internal abandon and reprocess flags are set to false at the start of every Merge processing loop.

Examples
If data is detected to be bad...

if (this._value == "reeks") _document.abandon();
_logPrintf("Documentidentifying data... was rejected, and not output\n");

Consider that one and two-page documents are folded to fit into a simple business envelope, but three or
more require a large envelope and either no or different folding. Well, the amount of paper needed
depends on the size of the headers used. So the idea is to switch headers based on the number of pages
being generated. But we don't know the number of pages until we paginate. Generally, that's too late to

So you're an expert in DocOrigin, eh! Good for you, otherwise, select another topic.
It's really easy to put Merge into an infinite loop, when using _document.reprocess. CARE.

Scripting | Script Functions

page 463

substitute in a different sized header. So... we may want to abandon the current rendering and do a new
one with a different header in use.

At the start of job and end of document events...

_cache.useHeader = "normal";

At the pagination completed event...

pageCount = _printer.getPageCount();
if (pageCount > 4 && _cache.useHeader == "normal") {
 _cache.useHeader = "manyPagesHeader";
 _document.reprocess(); // Set flag to start this document over again
 _document.abandon(); // Set flag to abandon at the end of the current stage
}

In the Data Merged event for each header...

this._visible = (_cache.useHeader == "the one that applies");

Certainly, you should pick the most common scenario as the default rather than incurring reprocessing
overhead.

One could go wild (and crazy) by reprocessing to handle repagination if you foolishly change the document
contents significantly at the Pagination Complete stage. Not recommended. And watch for loops.

Scripting | Script Functions

page 464

_document.bookmark
Create PDF bookmarks.

Syntax
_document.bookmark(key, value)

Parameters
key specifies the main bookmark category, for example, "CustomerContact".

value specifies a sub-bookmark below the category, for example, "ABC Company".

Both parameters must be strings.

Returned Value
None.

Description

Each time the _document.bookmark routine is called the current page is added to a table of bookmarks
that the PDF viewer can display. A nested hierarchy of bookmarks can be defined by setting key to a list of
key names separated by the "|" (vertical bar character). For example "CustomerContact|ABC Company".
The "CustomerContact" bookmark would open a list of companies that included "ABC Company". The "ABC
Company" bookmark would open a list of values, for example, contact information, as in

_document.bookmark("CustomerContact|ABC Company","Tony Blue 555.123.4567");

Each individual value would go to the specific first page of the corresponding document.

In the PDF viewer, when the bookmark associated with value is selected, the user will be repositioned to
the first page of the document associated with that bookmark.

Note that the PDF driver bookmark feature must be enabled either with the PDF .prt file (Default-
PDF.prt) by setting the <Bookmark>Yes</Bookmark> option, or by using the -PDFBookmark Yes
command-line option.
Without that setting the bookmarks will still be encoded in the PDF and could be used by the
PDFExtract tool, but they would not appear in the Adobe Reader bookmark navigation pane.
By the way, to see the bookmark navigation pane in Adobe Reader use:
View > Show/Hide > Navigation Panes > Bookmarks
In Foxit Reader use:
View > Navigation Panels > Bookmarks

Scripting | Script Functions

page 465

Examples
Consider a scenario where you have an Invoice document. Each Invoice header page has a CustomerID
field which is the customer's name and a SalesRep field which is the company's Sales representative. Merge
has been configured to run a large batch of documents and to combine them into a single (large) PDF file
containing all the Invoices.
On the CustomerID field you add the following script:

_document.bookmark("CustomerID", this.value);
_document.bookmark(SalesRep.value, this.value);

The first line causes the PDF viewer to show a bookmark group call "CustomerID". Under that name, there
will be an entry for every customer that takes you to the invoice for that customer.

The second line creates a bookmark group for each unique SalesRep name. Under each sales rep there will
be a list of customer names assigned to that sales rep.

The result in the PDF viewer would appear as:

Scripting | Script Functions

page 466

_document.reprocess
Do this same document data again.

Syntax
_document.reprocess()

Parameters
None.

Returned Value
None.

Description

_document.reprocess is almost certainly used with _document.abandon. (See _document.abandon)

This function sets an internal flag such that at the end of the current Merge processing stage, Merge will
process this document's data set over again.

This may be desirable, without abandon, as some obscure way to produce multiple copies. You could set
an _cache variable to "Customer Copy" or "Store Copy", for instance, and use that _cache variable to
populate a footer. (BTW, there are better and far more efficient ways to achieve that goal). Not recommended.

Where it is more likely applicable, and even then only rarely, is in taking action based on information that
only the presentation software (Merge) knows. For the most part that is the page count. See the example.

The internal abandon and reprocess flags are set to false at the start of every Merge processing loop.

Examples
Consider that one and two-page documents are folded to fit into a simple business envelope, but three or
more require a large envelope and either no or different folding. Well, the amount of paper needed
depends on the size of the headers used. So the idea is to switch headers based on the number of pages
being generated. But we don't know the number of pages until we paginate. Generally, that's too late to
substitute in a different sized header. So... we may want to abandon the current rendering and do a new
one with a different header in use.

At the start of job and end of document events...

_cache.useHeader = "normal";

So you're an expert in DocOrigin, eh! Good for you; otherwise, select another topic.
It's really easy to put Merge into an infinite loop when using _document.reprocess. CARE.

Scripting | Script Functions

page 467

At the pagination completed event...

pageCount = _printer.getPageCount();
if (pageCount > 4 && _cache.useHeader._value == "normal") {
 _cache.useHeader = "manyPagesHeader";
 _document.reprocess(); // Set flag to start this document over again
 _document.abandon(); // Set flag to abandon at the end of the current stage
}

In the Data Merged event for each header...

this._visible = (_cache.useHeader == "the one that applies");

Certainly, you should pick the most common scenario as the default rather than incurring reprocessing
overhead.

One could go wild (and crazy) by reprocessing to handle repagination if you foolishly change the
document contents significantly at the Pagination Complete stage. Not recommended. And watch for
loops.

Scripting | Script Functions

page 468

_document.serializeForm
Serialize this document to the file.

Syntax
_document.serializeForm(file)

Parameters
file specifies the output file.

Returned Value
true if successful, false if an error occurred. (As of 3.2.001.09)

Description
(As of 3.1.002.03) Your script might make any number of property changes to the form template DOM (like
visibility, margins, etc.) Then you can call serializeForm(an xatw file name) and it will write out the XATW
with all of the current form template DOM.

Note, in the context of this function it makes sense to modify form template DOM only up to and including
the StartNewDocument event. After that point all your changes will be reflected in a document being
generated, but not in the form template! But you may call this function on any event.

This function is not for everyday use but may be useful for advanced users in some specific scenarios.

Scripting | Script Functions

page 469

•

•

•

•
•

•
•
•

•

•

_file - read/write files
_file is a JavaScript object which has a number of functions related to file handling.

One of these functions is _file.fopen. This function opens a file for either reading or writing. It creates a new
JavaScript object which is returned as the value of the function call. That object, in turn, has functions
associated with it to read from and write to the file.

_file Functions
_file.copy(fromFile, toFile) - copy a file. As of 3.2.001.02, toFile can be just the destination directory, and not
include the file name.
fromFile cannot include wildcards. You copy one file at a time.

_file.date(fileName) - return the 'last modification date' of a file. The returned format is "yyyy/mm/dd
hh:mm:ss". This can be used directly in a new Date(...) construct.
_file.delete(fileName) - delete a file. As of 3.0.005.07, the file name can contain wildcards.
No error is issued if no such file exists.

_file.errno() - returns the last error code from a previous file operation.
_file.exists(fileName) - determine if the named file exists or not. (As of 3.0.005.07).
Supports file name wildcards (like "$E/*.prm") (As of 3.2.001.02).

_file.findClose() - terminate a wildcard file search.
_file.findNext(fileSpec[, directories]) - begin or continue a wildcard file search. Returns "" at end-of-list.
_file.gets() - read a single line from the console.
Note that this is gets, not fgets. Do not confuse this with fp.fgets which reads from a file.

_file.fopen(fileName, fmode [, "BOM"]) - open a file. Returns a file pointer object (fp)
For write mode purposes you can force the writing of a BOM by supplying the optional third parameter with a
value of "BOM" (Byte Order Mark).

_file.fromBase64(base64, fileName) - Decode a base64 string into a file.
Use this for binary data with NULLs.

Returns a boolean value representing the operation's success/failure. (As of 3.2.001.01).

Semi-automatic File Path/Name Resolution

DocOrigin likes to discourage the use of hard-coded file paths. Consequently, we urge you to use
the $X folder mappings as described in $X String Substitutions. Script functions with file or folder
name parameters will automatically resolve those $X folder mapping references. That takes care of
a large number of cases automatically.
However, if your file name parameter also uses the various % placeholders as described in File
Naming Conventions, those % placeholders will not be automatically resolved. The user is expected
to have control over their file names and should use _file.resolveName or _resolve if required
when passing such templated file names to a script function.

Scripting | Script Functions

page 470

•
•

•

•

•
•

•

•
•

•

•
•

•

•
•

_file.getFileNamePart(fileName, part) - return a selected portion of a file name.
_file.getOpenFileName([folder], [title], [fileTypes], [defaultFile]) - display the File Open dialog
Returns the user-chosen file name. If the user clicks Cancel, null is returned.

_file.getSaveFileName([folder], [title], [fileTypes], [defaultFile]) - display the File Save dialog
Returns the user-chosen file name.

_file.getOpenFolderName([initFolder], [title]) - (As of 3.2.001.02) display the Folder Open dialog
Returns the user-chosen folder name. If the user clicks Cancel, null is returned. This is a Windows-only function.
_file.isDir(dirPath) - determine if the provided path is a directory or not. (As of 3.0.005.07).
_file.mkdir(dirPath) - create a file directory.
As of version 3.0.003.19, this will also handle multi-level paths such as "C:/A/B/C".
Return codes: 0 - Ok; 1 - path was already there; -1 - a failure

_file.readFile(fileName[, convertLineEndings]) - read the contents of fileName
Returns the file contents as a JavaScript string. If the file does not exist, null is returned.

convertLineEndings (defaults to true) requests line ending conversion from Windows to Unix (\r\n to \n). (Added
in 3.2.001.01).

Note that not doing line-ending conversions may result in faster processing but newlines and linefeeds are left in
the returned string.

_file.readIniFile(fileName) - read a .ini file. Returns a JavaScript object with all the data from the .ini file.
_file.readPdfData(fileName) - open a DocOrigin generated PDF and extract the embedded data.
See -prt option. (Merge -pdfEmbedData Yes option)
Returns a text string of the embedded-in-the-PDF xml data used to produce the document. (As of 3.0.003.13).

_file.readPrmFile(fileName) - read a DocOrigin .prm file.
The returned value will be a JavaScript object with name/value properties corresponding to the .prm file
entries. If the file does not exist or is not properly formatted null is returned.

_file.remove(fileName) - synonym for the _file.delete function.
_file.rename(fromFile, toFile) - rename a file.
Returns 0 if successful. Note that you cannot change the path of the file, only its name.

_file.resolveName(template) - do variable substitution into a template intended to be used as a file name.
See _resolve for details. In this "file name template" context, [] references to fields which don't exist will be
deleted.

_file.rmdir(directoryName) - delete the specified directory (which must be empty).
_file.tempname(dir) - create an empty temporary file and return its name as a string. Note that dir is ignored.
On Windows, it uses the TMP environment variable. Under Unix, it uses the TMPDIR environment variable if it is
set, otherwise, it uses /tmp. The folder pointed to by %TMP% or
$TMPDIR must exist. In either case, it uses an AtwTempFiles folder under the nominated temp folder; that
subfolder is created automatically.

Doing an _file.resolveName("$T/xxxx_%u.ext") may be a preferred option in that it gives you more

Scripting | Script Functions

page 471

•
•
•

•

control over the name of the file including its file extension. Use %u to ensure it has a unique name.

_file.toBase64(fileName) - convert the contents of a file to a base64-encoded string. (As of 3.1.002.10).
_file.unzip(zipPath, destPath [, overwrite]) - extract files from a zip archive. (As of 3.1.002.06).
_file.writeFile(fileName, string [, "-BOM"] [, mode]) - writes string to the designated file.
This function opens fileName for write (overwriting if necessary); writes the string, and closes the file.

The output is always written in UTF8 format. Normally a BOM (see https://www.w3.org/International/questions/
qabyte-order-mark for details) is written. As of 3.0.005.07, you can suppress that by supplying the optional third
parameter with the value "-BOM".

As of 3.2.001.02, the mode parameter was introduced. Use the value "a" to initiate append mode (creates the file
if it does not exist).

The _file.writeFile function returns a boolean true if successful and false if something went wrong.

_file.zip(zipPath, filePath [, addMode]) - add a file to the zip archive. (As of 3.1.002.06).

See Also

_file.fopen fp.fprintf fp.fclose fp.fgets fp.fputs _message _printf _tracef _toBase64
_fromBase64

https://www.w3.org/International/questions/qabyte-
https://www.w3.org/International/questions/qa-byte-order-mark

Scripting | Script Functions

page 472

•

•
•

•

•

_file.fopen
Open a file for reading or writing.

Syntax
_file.fopen(filename, fmode[, "BOM"])

Parameters
filename the name of a file to be opened.

fmode The type of open. This setting is a standard C file open mode - typically "r" for read, "w" for write or
"a" for append.

["BOM"] Supplying a third parameter of value "BOM" (Byte Order Mark) will indicate that a BOM is required
on output. Otherwise, no BOM will be written. Note that this is a different default than what applies to
_file.writeFile(). If the open mode is "w" or "a", i.e. for output, then the file will be immediately created.
For mode "w" it will silently overwrite an existing file of the given filename.

Returned Value
If successful, fopen returns a new object that represents the File Pointer fp of the open file. You can then
use this new fp object to read or write. If the file cannot be opened, null is returned.

Functions
You must use the returned fp object from fopen in order to read or write a file. The following functions can
be used with this file pointer.

fp.fclose() - close the file specified by fp.

fp.fflush() - force the file's memory buffer to be written to the file.
fp.fgetc() - read a single byte (an integer between 0 and 255) from the current open file specified by fp.
Returns -1 when at end-of-file.
Multi-byte characters will be returned one byte at a time.
Users of these byte-oriented functions will likely be interested in the basic JavaScript functions of
charCodeAt() and String.fromCharCode().
fp.fgets() - read a single line from the current open file specified by fp.
Returns null when at end-of-file.
The file is expected to be encoded in UTF8 (7-bit ASCII is a subset of UTF8).
fp.fprintf(format [, p1 [, p2...]]) - write a formatted line of text to the file. See _printf for details.

WARNING - Files are NOT automatically closed by a DocOrigin application until the application itself
exits. If your application repeatedly opens files and does not explicitly close them when it has
finished with them, you may experience performance degradation. In extreme cases the
application may fail due to having too many files open (even if it is the same file opened over and
over without being closed; close your files!).

Scripting | Script Functions

page 473

•

•

•

•

•
•

fp.fputc(an integer number) - write a single byte to the file.
The number should be 0 <= n <= 255. Note that no automatic UTF8 encoding will occur. It's very raw.
fp.fputs(string) - write a line of text to the file.
The line will be encoded in UTF8. (Internally, strings are in multi-byte Unicode.)
fp.fread([count]) - read up to 'count' bytes of data from the input file.
This returns a string containing the bytes read. If 'count' is not specified, everything up to and including the next
newline is read. This bypasses any implied assumption that characters are encoded as UTF8. Instead, the raw
bytes are read. In theory you could read binary files with this function but in practice null bytes will terminate
the returned string and processing non 7-bit ASCII characters will be nigh impossible. See fp.fwrite() as well.
fp.fseek(offset, origin) - move to a new location in the file.
origin: 0 is start-of-file; 1 is current offset; 2 is end-of-file. offset can be negative.
fp.ftell() - returns the next read/write position (i.e. the current offset) in the file.
fp.fwrite(string, [count]) - write 'count' characters to the file.

This writes the data without the usual conversion to UTF8. If 'count' is not specified, the entire string is
written out.

Example

var fp = _file.fopen("myfile.txt", "w"); // open for write
if (fp) {
 fp.fputs("Hello World"); // write to file
 fp.fclose();
}

Naming Conventions
fp is an extremely common variable name to use for a file pointer. It's readily understood by maintainers of
your code; great for when dealing with only one file.

As a suggestion, you might consider using fpIn and fpOut for a classic case where you have an input file
and an output file.

Another useful method is to prefix fp to the file's purpose. E.g. fpForm, fpData, fpControl. Using that
convention helps make yor script more readily understood (and thus maintained). This is akin to the habit
of using what is called "Hungarian notation" wherein strings would start with s (e.g. sName); booleans start
with b (e.g. bFound); integers start with i if they are 0-based, or with n if they are 1-based (e.g. iIndex,
nCount).

Similarly, it is useful to adopt the convention of prefixing your file name variables with fn. E.g. fnForm,
fnData, fnControl. Correlating your fn's and your fp's is pretty helpful.

Scripting | Script Functions

page 474

_file.findNext
Cycle through a list of files that match a file name mask

Syntax
_file.findNext(nameMask[, directories])

Parameters
nameMask A wildcarded file (or directory) name mask. Typically something like "*.xml" or "subFolder/*.txt"

directories As of 3.1.002.06. Optional boolean parameter indicating to look for directories instead of files.
The default behavior is to look for files.

Returned Value
The name of the next file (or directory) that matches the name mask. Returns "" if there are no more
matches for the name spec.

Description
This function is used to determine the names of all the files or directories that match a given name mask.

Example
See domObj.appendInstance for an example of usage of these functions.

It is an extremely good idea to call _file.findClose() before beginning a loop of calls to
_file.findNext(). _file.findClose() ensure that you start a new search rather than
continuing on from some previous _file.findNext() search.

Scripting | Script Functions

page 475

_file.getFileNamePart
Valid part names are: Full, Drive, Path, DrivePath, Name, Ext, NameExt, NoExt.

Note that DrivePath and NoExt require build 3.0.001.10 or greater.

If the fileName does not have a full path, the full path will be computed based on current circumstances.

var f = "C:/DocOrigin/DO/Samples/empty.xml";
s = _file.getFileNamePart(f, "Full"); // "C:/DocOrigin/DO/Samples/empty.xml"
s = _file.getFileNamePart(f, "Drive"); // "C:"
s = _file.getFileNamePart(f, "Path"); // "/DocOrigin/DO/Samples"
s = _file.getFileNamePart(f, "DrivePath"); // "C:/DocOrigin/DO/Samples"
s = _file.getFileNamePart(f, "Name"); // "empty"
s = _file.getFileNamePart(f, "Ext"); // ".xml"
s = _file.getFileNamePart(f, "NameExt"); // "empty.xml"
s = _file.getFileNamePart(f, "NoExt"); // "C:/DocOrigin/DO/Samples/empty"

Scripting | Script Functions

page 476

_file.getOpenFileName
Prompt user for a file to Open.

Syntax
_file.getOpenFileName([folder], [title], [filetypes], [defaultfile])

Parameters
All parameters are optional or can be replaced by null.

folder - the local file folder that should be displayed to start with.

title - alternate text to appear in the Open dialog's title area.

filetypes - a string that customizes the dialog with default file types to display. If omitted, all files are
displayed. The string must be formatted as a sequence of pairs of descriptors - a text (display) string
followed by one or more wildcard file extension specifications. Each item in the list must be separated by
the vertical bar character. Example:

"Form Files|*.xatw|Data Files|*.xml;*.dat|All Files|*.*"

The above string displays 3 filetype options - one for all xatw files, one that displays .dat and .xml files, and
one that displays all files. By default, all files are shown.

defaultfile - a default filename to be displayed in the dialog. Only the filename.ext is required.

Returned Value
If the user selects a file, the full path+filename is returned. Otherwise returns null.

Scripting | Script Functions

page 477

_file.getSaveFileName
Prompt user for a file to Save.

Syntax
_file.getSaveFileName([folder], [title], [filetypes], [defaultfile])

Parameters
All parameters are optional or can be replaced by null.

folder - the local file folder that should be displayed to start with.

title - alternate text to appear in the Save dialog's title area.

filetypes - a string that customizes the dialog with default file types to display. If omitted, all files are
displayed. The string must be formatted as a sequence of pairs of descriptors - a text (display) string
followed by one or more wildcard file extension specifications. Each item in the list must be separated by
the vertical bar character. Example:

"Form Files|*.xatw|Data Files|*.xml;*.dat|All Files|*.*"

The above string displays 3 filetype options - one for all xatw files, one that displays .dat and .xml files, and
one that displays all files. By default, all files are shown.

defaultfile - a default filename to be displayed in the dialog. Only the filename.ext is required.

Returned Value
If the user selects a file, the full path+filename is returned. Otherwise returns null.

Scripting | Script Functions

page 478

_file.readIniFile
(As of 3.1.002.10)

Load a .ini file into a JavaScript object

Syntax
_file.readIniFile(filename)

Parameters
filename is the name of the .ini file to be read. Note that the usual $F-type of substitution is also applied.
The file is required to contain either utf8 or plain ascii characters.

Returned Value
The contents of the ini file is converted to a JavaScript structure.
null is returned in case of an error, e.g. file not found.

Description
For ini file entries without a [section] (i.e. in the default "" section), these are simple name:value entries in
the JavaScript object. Entries within a [section] are stored as section:{array of name:value pairs}. See the
Example below.

Example

; sample ini file

first="ABCDEF"
second="12345"

[Section1]
third=123
fourth=456

The above can be loaded by:

 var oIni = _file.readIniFile("thefilename");

The resulting value of variable oIni will be:

oIni={
 "first":"ABCDEF",
 "second":"12345",
 "Section1":{
 "third":"123",

Scripting | Script Functions

page 479

 "fourth":"456"
 }
 }

first = oIni.first; // simple reference to a value
home = oIni["home address"]; // when the keyword contains a non-alphanumeric char.
third = oIni['Section1'].third; // reference to a section

readIniFile does not have specific sister functions for enumerating sections and/or keys within sections. As
the returned object is a standard JavaScript object, the usual

 for (var x in oIni)... constructs should suffice for enumeration needs.
If typeof x is an object then x is a section name.

ini files are often used for language translation tables. In such cases, it is not unusual that the key is a
multi-word string. Eg.

 Continues on the next page=Fortsättning på nästa sida

You will of course not be able to reference oIni.Continues on the next page but you can (must) reference
oIni["Continues on the next page"]. Since this example is likely from the [Swedish] section you might
be referencing oIni.Swedish["Continues on the next page"]. All the usual JavaScript capabilities apply.

See Also

_profile _file.readPrmFile

DocOrigin Extended ini Support

Please see _profile for descriptions of DocOrigin's extended support for ini files.
These include:
1. Conditional and unconditional includes of other ini files
2. Special character handling within values
3. "heredoc" support
4. Default section continuation using []
5. Auto text substitution using the [Define] section
6. Key names may be any string not just a single word
7. Values can optionally be surrounded by "" or ''.

Note - the readIniFile() function is similar to the _profile.load() function, but more general-purpose,
and is recommended unless you are specifically wanting to reset the internal Profile settings.
readIniFile will not do any of the automatic actions that may be specified in a true profile file.

https://docs.docorigin.com/reference-manual/scripting/script-functions/_file-read-write-files#:~:text=of%203.0.003.13).-,_file.readPrmFile,-(fileName)

Scripting | Script Functions

page 480

_file.resolveName
String substitution

Syntax
_file.resolveName(text)

Parameters
text - a text string with all manner of placeholders to be replaced. These include [fieldname] or [!autofield]
placeholders, %x placeholders (see File Naming Conventions), and $X placeholders (see $X String
Substitutions).

Returned Value
A new string with substitutions is done.

Description
This routine is a script equivalent of the [fieldname] and [!autofield] substitution available in normal text
labels. See the Auto/Embedded Fields section for a list of available [!autofield] variables.

If used in the context of Merge, i.e in the script in a form, where there is a Document DOM available,
 _resolveName looks for substrings of the form [fieldname] and replaces them with the field's value from
the current document. This function uses the same substitution logic as the Merge embedded fields -
including [!pagenum] etc. If the text between the left and right square brackets is not a known name the
text and square brackets are left unchanged in the text string.

Unlike _mergeEmbedded, in any context, e.g. Merge, RunScript, or Job Processing scripts,
_file.resolveName will also do substitution of the % variables (typically date elements) that is done for
output file names. See any .prt file.

Further, any $X style variable will be substituted as well.

Note that the string is presumed to be a file name, so replacement of characters that are invalid for file
names is done. Also, backslashes are converted to forward slashes. By contrast, see _resolve.

_file.resolveName is generically related to files and hence is a function of the _file object itself. It is NOT a
function of an opened file instance, i.e. NOT fp._resolveName.

Example
In RunScript one might use:

CAUTION: _file.resolveName will create any paths that are referred to in the provided name
template string. It does not create the file, but it does create the path. If you do not want that to
happen, use _resolve.

Scripting | Script Functions

page 481

 myFileName = _file.resolveName("$T/CriticalStats_%U.txt");
 fp = _file.fopen(myFileName, "w");

See Also

Auto/Embedded Fields _auto _resolve _mergeEmbedded

Scripting | Script Functions

page 482

_file.zip
(As of 3.1.002.06)

Add a file to zip archive.

Syntax
_file.zip(zipPath, filePath [, addMode])

Parameters
zipPath - the name of a zip file to be created or modified.

filePath - the name of a file or folder to be added to zip archive. As of 3.2.001.05 wildcard for filenames are
supported (like "in/file*.pdf").

addMode - a string that defines whether archive is truncated or appended. Possible values are "create" or
"add". Default is "create". If mode is "add" but zip file doesn't exist then "create" mode is used.

Returned Value
Boolean value represents the success of the operation.

See Also

_file.unzip

Scripting | Script Functions

page 483

_file.unzip
(As of 3.1.002.06)

Extract files from a zip archive.

Syntax
_file.unzip(zipPath, destPath [, overwrite])

Parameters
zipPath - the name of a zip file to be read.

destPath - the path where to put extracted files.

overwrite - a boolean flag indicating whether to overwrite the destination file or not in case of conflict.
Default is "false". If set to "false" and there is a conflict, then the function fails.

Returned Value
Boolean value represents the success of the operation.

See Also

_file.zip

Scripting | Script Functions

page 484

fp.fclose
Close a previously opened file.

Syntax
fp.fclose()

Parameters
None

Returned Value
None

Description
Closes a currently open file.

Example

 var fp = _file.fopen("myfile.txt", "w"); // open for write
 fp.fputs("Hello World"); // write to file
 fp.fclose();

Scripting | Script Functions

page 485

fp.fgets
Read a line from a previously opened file.

Syntax
fp.fgets()

Parameters
None

Returned Value
Returns the next line of text in the file. null if at end-of-file.

Description
A previous call to _file.fopen must have been made. That fopen returns a new file pointer object fp. That
object must then be used to call fgets. The file being read is expected to be encoded in UTF8.

Example

var fp = _file.fopen("myfile.txt", "r");// open for read
if (fp) {
 var s = fp.fgets(); // read first line
 _message("First line='%s'", s);
 fp.fclose();
}

Scripting | Script Functions

page 486

fp.fprintf
Writes formatted text to a file

Syntax
fp.fprintf(format [, p1 [, p2...]])

Parameters
format is a template string to be written to the file. It is similar to a C format string with embedded %s %d
%f markers that get replaced by parameters passed to fprintf. For a more complete description of the
formatting, process see _printf.

p1, p2, ... are parameters to be substituted into the format string.

Returned Value
None

Description
A previous call to _file.fopen must have been made. It returns a new file object fp. That object must then be
used to call fprintf.

Example

 var fp = _file.fopen("myfile.txt", "w"); // open for write
 var sName = "Wayne Hall";
 fp.fprintf("Name='%s'\n", sName);
 fp.fclose();

See Also

 _logf _message _printf _tracef

Scripting | Script Functions

page 487

fp.fputs
Write a string to a previously opened file.

Syntax
fp.fputs(string)

Parameters
string is a string of characters to be written to the output stream. fp a file object previously created
by _file.fopen.

Returned Value
None

Description
A previous call to _file.fopen must have been made. It returns a new file object fp. That object must then be
used to call fputs.

Example

 var fp = _file.fopen("myfile.txt", "w"); // open for write
 fp.fputs("Hello World"); // write to file
 fp.fclose();

Scripting | Script Functions

page 488

_fromBase64
(As of 3.1.002.10)

Convert a Base64-encoded string to plain text.

Syntax
_fromBase64(string [,bytesperchar])

Parameters
string is a base64-encoded string value to be converted.

bytesperchar is the coding size of the characters in the string parameter. The default is 1 - indicating that
each string character is to be converted to a single unicode output character.

If the source string contains two encoded bytes that represent a single unicode character, then set
bytesperchar to 2.The above string displays 3 filetype options - one for all xatw files, one that displays .dat
and .xml files, and one that displays all files. By default, all files are shown.

defaultfile - a default filename to be displayed in the dialog. Only the filename.ext is required.

Returned Value
Returns the resulting unencoded string

Example

 var str = "DocOrigin 2020";
 var b64 = _toBase64(str); // "RG9jT3JpZ2luIDIwMjA="
 var txt = _fromBase64(b64); // "DocOrigin 2020"

 var str2 = "保险单号";
 var b64 = _toBase64(str2, 2); // "T92WaVNVU/c="
 var txt = _fromBase64(b64, 2); // "保险单号"

See Also

_toBase64 _file.toBase64 _file.fromBase64

https://docs-admin.docorigin.com/display/RM/_file+Functions#:~:text=_file.toBase64(fileName)%20-%20convert%20the%20contents%20of%20a%20file%20to%20a%20base64-encoded%20string.%20(Introduced%20in%203.1.002.10).
https://docs-admin.docorigin.com/display/RM/_file+Functions#:~:text=_file.fromBase64(base64,%20fileName)%20-%20Decode%20a%20base64%20string%20into%20a%20file.

Scripting | Script Functions

page 489

_fromDOUnits
(As of 3.1.002.10)

Convert a Base64-encoded string to plain text.

Syntax
_fromDOUnits(number [, units, decimals])

Parameters
number is an integer value of internal DocOrigin units to be converted.

units is a string representation of a common units code (in, ", cm, mm, pt, pts).

decimals is an integer value of the number of decimals to report. The default is 3 so as to match what the
Design GUI reports.

Returned Value
Returns a floating point number of the specified common units, with the unit code appended, as a string.

Description
This routine converts an internal DocOrigin coordinates value (microns) into a string such as "1.25in". An
invalid or missing common unit code results in the use of the default locale measurement (cm in case of
Metric and inch otherwise).

Example

 _fromDOUnits(2000000, "in"); // returns "2.000in"
 _fromDOUnits(this._absTop); // returns cm or inch depending on current locale
 _fromDOUnits(2020000, "cm", 5)); // returns "5.13080cm"

The expected usage here is simply to aid in debug output where you use _logf to report an object's height
or position but do so in units that are more in keeping with the units you used in designing the form.

See Also

_toDOUnits Script Units

Scripting | Script Functions

page 490

_fromXmlString
(As of 3.2.001.06)

Convert an XML-encoded string to plain text.

Syntax
_fromXmlString(string)

Parameters
string is an XML-encoded string value to be converted.

Standard set of XML symbols that has to be escaped are handled - <>'"&.

Returned Value
Returns the resulting unencoded string

Example
_fromXmlString("<>'\"&"); // " <>'"&"

See Also

_toXmlString

Scripting | Script Functions

page 491

•
•
•
•
•
•
•
•
•
•
•
•

_inlineToRtf
(As of 3.1.001.01)

Converts Central inline formatting to RTF.

Syntax
_inlineToRtf(Central data with \x style inline commands)

Parameters
An Adobe (JetForm) Central data stream string.

Returned Value
That input string with inline commands is converted to RTF format.

Description
In Adobe (JetForm) Central, the data stream could include "inline commands" that could be used to style
text, e.g. bold, underline, italicize. DocOrigin uses the official RTF syntax for such operations. This function
strives to convert the "Central" syntax to the RTF way.

This is used internally in the ConvertDatToXml filter but has been made available for usage in a script.

This conversion handles:

\b1 and \b0 (bold)
\i1 and \i0 (italic)
\ul1 and \ul0 (underline)
\fs (font size)
\fn (font name)
\push (rtf {)
\pop (rtf })
\li (indent -- all we manage is to insert a tab)
\f# (select font by number -- discarded since those numbers are not correlated to any typeface name)
\u+xxxx. (Unicode character) (as of 3.1.001.08)
\n - becomes a newline
Other \??? sequences are discarded, with efforts to detect Windows-style file names so that they are not
discarded.

The above handles very much the vast majority of text style inline commands. If you encounter others you
will have to pre- or post-process the data.

Scripting | Script Functions

page 492

Example

 var rtf = _inlineToRtf("The \\b1.quick\\b0. fox...");

See Also

ConvertDatToXml Filter

Scripting | Script Functions

page 493

•

•
•

•

•
•

_job
Current job and command line parameters

Whenever a DocOrigin script program is run a _job object is created. This object stores all command line
settings in a subObject called _job.command. In some situations, it also carries job processing options and
settings. The information is all ReadOnly.

When used by the FolderMonitor program, some additional information is available that indicates the
FolderMonitor job status.

Properties
_job.command.xx - a sub-object that contains all command line settings.
All command-line name/value pairs are available. For instance the current logfile name can be found at
_job.command.logfile. The form template passed to Merge is _job.command.form.
_job.datafile - (FolderMonitor only) the name of the current data file being processed.
_job.name - (FolderMonitor only) the current job name.
This is the job name as determined by the FolderMonitor Job Discovery Process (see Job Name Discovery).
_job.options.xx - (FolderMonitor only) other options from the Job Discovery Process.

Functions
Returns the resulting unencoded string

_job.logf() - dump _job content to log file.
_job.setCommandOption(name, value) - set one of the _job.command.xxx options and the global option it
represents.

See Also

Job Name Discovery _printer - output configuration settings

Scripting | Script Functions

page 494

•
•

•

•

•
•
•

•
•

•
•

•
•

_locale
These functions format numbers, currency, date, and time values in localized language/country format.

Functions
_locale.create([code]) - Create new or get default locale object.
_locale.setDefault(code) - Set default locale. (as of 3.2.001.01) (Merge only)

Usage
To use the _locale features you must create an instance of the _locale object as follows:

 var loc = _locale.create("fr_CA"); // French-Canadian

This new loc object can now be used to do various conversions to the specified locale (French Canadian in
this example). The parameter to _locale.create() is a string comprised of a 2-character language code,
followed by an underscore, followed by a 2-character country code.

If you do not supply a locale name (_locale.create()) then you will get a default locale object.

DocOrigin uses the IBM ICU tools to do all locale conversion. They use standard Language Codes specified
in the ISO-639 standard. The Country Codes are from the ISO-3166 standard.

Object functions
loc.country() - returns a 3-character country code.
For example when using locale 'en-US' this routine will return "USA".
loc.currency() - returns a 3-character currency code.
For example when using locale 'en-US' this routine will return "USD".
loc.currentDate([style [, timezone]]) - returns the current date.
loc.currentTime([style [, timezone]]) - returns the current time.
loc.formatCurrency(num) - returns a text string formatted according to the current locale's currency
conventions.
loc.formatDate(num [, style]) - creates a localized date string.
loc.formatNumber(num) - returns a number formatted into a text string according to the specified locale's
conventions.
loc.name() - returns the locale's name (e.g. "fr_CA").
loc.parseCurrency(currencystring) - convert a formatted currency value to javascript number.
This routine will remove currency symbols and deal correctly with comma vs dot separators as dictated by the
locale.
loc.parseDate(datestring [, style]) - convert formatted date to a number.
loc.parseNumber(numberstring) - convert formatted number to a javascript number.
Note that this routine assumes the numberstring is correctly formatted for the locale. For example:

http://www.loc.gov/standards/iso639-2/php/code_list.php
https://www.iso.org/iso-3166-country-codes.html

Scripting | Script Functions

page 495

•

•

 var loc = _locale.create("fr_FR"); // France
 n = loc.parseNumber("12.345,67"); // returns 12345.67

loc.spellOut(number [, caps]) - convert a number to words.
This function is only available for a limited number of languages. It converts a number like 154 to "one hundred
fifty-four". If the second caps argment is set to true the text will be "One Hundred Fifty-four'.
loc.spellOutCurrency(number, format [, case]) - convert a currency number to words.
format is a text string with an embedded %s to mark where the currency "dollars" should be embedded.
Optionally, a second %s or %d can be used to embed the "cents" as either a string or 2 decimal digits.
case can be specified to shift the text case - 'upper' will shift all spelled-out text to upper case. 'mixed' will make
the first letter of each word upper case. Default is all lowercase.
Example:

var loc = _locale.create("en_US");
this._value = loc.spellOutCurrency(123.46, "*%s Dollars and %d Cents*");
// results in *one hundred and twenty-three Dollars and 46 Cents*
this._value = loc.spellOutCurrency(123.46, "*%s Dollars and %d Cents*", "mixed");
// results in *One Hundred and Twenty-three Dollars and 46 Cents*
this._value = loc.spellOutCurrency(123.46, "*%s Dollars and %s Cents*", "upper");
// results in *ONE HUNDRED AND TWENTY-THREE Dollars and FORTY-SIX Cents*

Scripting | Script Functions

page 496

loc.currentDate
Format the current date

Syntax
loc.currentDate([style [, timezone]])

Parameters
style - the style to format the date string - see Description below. The default setting is "Short".

The styles are:

Style Description

"Short" the most terse form, as in "3/2/09"

"Medium" "Mar 2, 2009"

"Long" "March 2, 2009"

"Full" "Friday, March 2, 2009"

timezone, if present, indicates which international timezone to get the current date for. Timezones are
specified by a string of the form "GMT+08:00" or "Australia/Perth" or "EST". If omitted the timezone of the
computer on which it is running will be used.

Returned Value
A formatted date string.

Description
Return the current date formatted for the language and country of the locale object loc. style indicates the
display format. The style variants may not all be unique for some locales.

See Also

_locale loc.formatDate

Scripting | Script Functions

page 497

loc.currentTime
Format the current time

Syntax
loc.currentTime([style [, timezone]])

Parameters
style - the style to format the time string - see Description below. The default setting is "Short".

The styles are:

Style Description

"Short" the most terse form, as in "1:59 PM"

"Medium" "1:59:26 PM"

"Long" "1:59:26 PM GMT-05:00"

"Full" "1:59:26 PM GMT-05:00"

timezone, if present, indicates which international timezone to get the current time for. Timezones are
specified by a string of the form "GMT+08:00" or "Australia/Perth" or "EST". If omitted the timezone of the
computer on which it is running will be used.

Returned Value
A formatted time string.

Description
Return the current time formatted for the language and country of the locale object loc. style indicates the
display format. The style variants may not all be unique for some locales.

See Also

_locale loc.formatDate loc.currentDate

Scripting | Script Functions

page 498

loc.formatDate
Format a date

Syntax
loc.formatDate(num [, style])

Parameters
num - a numeric representation of the date.
Typically this is from a previous call to loc.parseDate.

style - the style of this date string - see Description below. The default setting is "Short".

The styles are:

Style Description

"Short" the most terse form, as in "3/2/09"

"Medium" "Mar 2, 2009"

"Long" "March 2, 2009"

"Full" "Friday, March 2, 2009"

See different local patterns here. For instance "Date.3" pattern means "Short" style.

Returned Value
A formatted date string.

Description
Convert a date value num into a formatted date string. style indicates the display format. The value of num
can be generated by the loc.parseDate function. The style variants may not all be unique for some locales.

See Also

_locale loc.parseDate

https://www.localeplanet.com/icu/en-US/index.html

Scripting | Script Functions

page 499

loc.parseDate
Converts date string to numeric date.

Syntax
loc.parseDate(datestring [, style])

Parameters
datestring - a formatted date such as "March 29, 2013".

style - the style of this date string - see Description below. The default setting is "Short".

The styles are:

Style Description

"Short" the most terse form, as in "3/2/09"

"Medium" "Mar 2, 2009"

"Long" "March 2, 2009"

"Full" "Friday, March 2, 2009"

See different local patterns here. For instance "Date.3" pattern means "Short" style.

Returned Value
A numeric value that represents the date. This value can be used in loc.formatDate to re-format to a
different locale.

Description
The returned date value can be used as an argument for formatDate() to re-format the date using a
different locale or formatting style. Note that to be parsed correctly the datestring must be in the format
specified by the style parameter (default is "Short").

See Also

_locale loc.formatDate

https://www.localeplanet.com/icu/en-US/index.html

Scripting | Script Functions

page 500

_logf
Format a line of text and write it to the current logfile (and console if _logPrintf is used).

Syntax
_logf(format [, p1 [, p2...]])

_logPrintf(format [, p1 [, p2...]])

Parameters
format is a template of the text to be written to the file. It is similar to a C format string where embedded
%s, %d, and %f markers that get replaced by parameters passed to _logf. For a more complete description
of the formatting process, see _printf.

p1, p2, ... are the optional parameters to be substituted into the format string.

Returned Value
None.

Description
The _logf function formats a message and writes it to the current logfile.

There is also a _logPrintf function which writes the same message to both the logfile and console.

And there is a _dlogf function which is exactly the same as _logf except that it will write out to the log only
if -debug has been set. See Debugging Script

Example

 _logf("name=%s, city=%s", "Tony", "Paris"); // writes 'name=Tony, city=Paris'

See Also

fp.fprintf _message _printf _sprintf _tracef Debugging Script

Scripting | Script Functions

page 501

_logfEx
Format a line of text and write it to the current logfile with a severity level.

Syntax
_logfEx(severity, format [, p1 [, p2...]])

Parameters
severity can be one of "INFO", "WARN", "ERROR", or "FATAL". Actually, only the first character (case
insensitive) matters. If it is not recognized, "INFO" is used.

format is a template of the text to be written to the file. It is similar to a C format string where embedded
%s, %d, and %f markers that get replaced by parameters passed to _logf. For a more complete description
of the formatting process, see _printf.

p1, p2, ... are the optional parameters to be substituted into the format string.

Returned Value
None.

Description
The _logf function formats a message and writes it to the current logfile.

There is also a _logPrintf function which writes the same message to both the logfile and console.

And there is a _dlogf function which is exactly the same as _logf except that it will write out to the log only
if -debug has been set. See Debugging Script

Example

 _logfEx("WARN","name=%s, city=%s", "Tony", "Paris"); // writes 'name=Tony, city=Paris'

See Also

fp.fprintf _message _printf _sprintf _tracef Debugging Script

Scripting | Script Functions

page 502

_merge
Runs Merge, passing the argument list as command line parameters.

Syntax
_merge(args)

Parameters
args is either a string listing all the Merge command-line parameters or a JavaScript object whose
properties define the command-line parameters. If args is a string, the string will be passed as-is to the
Merge program.

If args is a JavaScript object, each object property name is converted to a DocOrigin-style -name parameter
and the property's value becomes the parameter's value. The property names mirror the command line
option names.

Returned Value
The return value from Merge. Merge will return zero (0) if it runs successfully. If the program cannot be
found or cannot be run the return code is platform-specific. On Windows _merge returns a value of -801 to
indicate that the Merge program could not be found or executed. For Linux and other unix platforms, it
returns -1. Since 3.0.002.02, the return code when Merge is not found is 111.

Description
Your application will wait until Merge has completed before resuming. As a convenience, the -logfile
specification that was provided to the app that is running your script will automatically be passed along to
the Merge app instance that you are launching. Of course, if you specify the -logfile option explicitly, your
option will be the one in effect.

Example

 var arglist = "-form=$F/myform.xatw -data=$D/mydata.xml";
 var rc = _merge(arglist);
 if (rc != 0) _printf("The Merge return code was: %d\n", rc);
 var args = new Object();
 args.form = $F + "/myform.xatw"; // or "$F/myform.xatw";
 args.data = $D + "/mydata.xml"; // or "$D/mydata.xml";
 var rc = _merge(args);
 if (rc != 0) _logPrintf("The Merge return code was: %d\n", rc);

This presumes that you have set up definitions for where the $F and $D folders are in your installation's
PATH.prm override file. See $X String Substitutions.

Scripting | Script Functions

page 503

In the first variation, if the form name had a space in its name, e.g. Sample_Invoice.xatw, then you would
have to quote it as in -form="$F/Sample_Invoice.xatw" — it has to be double quotes, not single quotes,
and hence the overall quoting around the whole arglist would use single quotes.

Don't forget to put a slash / at the start of the base file name.

Note, that in the second variation, it is safe to use $X path substitutions on all platforms. If you pass $X in
the first variation it will be incorrectly interpreted as an environment variable by Linux systems.

Do check your return codes.

See Also

_run _runScript

Scripting | Script Functions

page 504

_mergeEmbedded
(Merge only)

String substitution in data fields

Syntax
_mergeEmbedded(text)

Parameters
text a text string with [fieldname] or [!autofield] placeholders to be replaced.

Returned Value
A new string with substituted data.

Description
This routine is a script equivalent of the [fieldname] and [autofield] substitution available in normal text
labels. See the Auto/Embedded Fields section for a list of available [autofield] variables.

_mergeEmbedded looks for substrings of the form [fieldname] and replaces them with the field's value
from the current document. This function uses the same substitution logic as Merge embedded fields
processing - including [!pagenum] etc. If the text between the left and right square brackets is not a known
name the text and square brackets are left unchanged in the text string.

Example
If field LastName="Smith"; and field AccountNo=123456;, then

merged = _mergeEmbedded("Dear Mr [LastName]:\n re your account#[AccountNo]");
// sets merged to "Dear Mr Smith:\n re your account#123456"

Note that a potentially common usage of this facility is in scripts run at the "Data Merged" event. At that
event, data values have not had embedded field substitution done yet. Hence one may want to use

 merged = _mergeEmbedded(this._value);

to get the current field's value as it would be when embedded field substitutions (if any) has been done.

See Also

Auto/Embedded Fields _auto

Scripting | Script Functions

page 505

_message
Format a line of text and display as a Windows popup message.

Syntax
_message(format [, p1 [, p2...]])
_dmessage(format [, p1 [, p2...]]) -- when -debug is set

Parameters
format is a template of the text to be written to the file. It is similar to a C format string where embedded
%s, %d, and %f markers that get replaced by parameters passed to _message. For a more complete
description of the formatting process, see _printf.

p1, p2, ... are the optional parameters to be substituted into the format string.

Returned Value
None.

Description
The _message function displays a pop-up message on a Windows system. On non-Windows platforms it
will display the message to the stderr console and wait for the user to press a key.

The _dmessage function is identical but operates only when the -debug option is set.

Note, in some cases, it may block your execution without notice. For example, if you run as a Windows
service, you will not see a message but the execution is blocked. Consider using _logf/_printf or setting
-RunFromService input parameter to avoid interaction.

Example

 _message("name=%s, city=%s", "Tony", "Paris"); // displays 'name=Tony, city=Paris'

See Also

fp.fprintf _logf _printf _sprintf _tracef

Scripting | Script Functions

page 506

_odbc - database access
This object enables simple ODBC (Open Database Connectivity) access.

https://en.wikipedia.org/wiki/Open_Database_Connectivity

Scripting | Script Functions

page 507

Introduction
In general, users have their own applications that generate data files that are then merged with an
applicable form design. Almost always, those data files will be generated via access to various corporate
databases. The apps use speedy computer languages that can maintain database connectivity efficiently
across millions of operations. That continues. In no way is this simple JavaScript interface for database
access meant to supplant that. What it does allow a user to do is to augment the provided data with some
additional elements from an applicable database. That is the extent of the intended usage. It is not
intended to maintain databases or "discover" all of the data for a given document. That is still the purview
of the customer application.

ODBC requires the use of "Connector/ODBC" drivers that are specific to the database technology in use at
the customer site. These connectors are not provided by DocOrigin -- they are a customer's responsibility.
The underlying DocOrigin C++ code is expecting ODBC version 3 drivers to be used.

DocOrigin does not do any ODBC administration. Setting up DSN (Data Source Name) definitions that
enable access is again the responsibility of the customer.

The DocOrigin ODBC functionality support on Linux was introduced in 3.1.001.14.

Scripting | Script Functions

page 508

1.
2.
3.
4.
5.

Background
The ODBC functionality involves the use of several JavaScript objects.

The _odbc object itself
The ODBC Connection object
The ODBC Statement object
The ODBC Row object
The ODBC Column object

The _odbc object serves as the anchor. It is available to you 'out of the box'. It allows you to connect to a
given database "Data Source" via a DSN name that you provide. The _odbc object also lets you terminate
your odbc usage so that all database connections are closed.

The connection object, often named oConn, is used to execute SQL statements. Typically those would be
select statements, though other SQL statements such as insert or describe can be executed as well. In
theory, though unlikely, you could have multiple connections open while processing a single document.

The statement object, often named oStmnt, is used to cycle through all of the rows that were selected by
the executed query. In theory, though probably unusual, you could have multiple statements active
simultaneously.

The row object, often named oRow, provides all of the columns and their values for a single row. This is
often the most convenient means of processing the query results.

The column object, often named oCol, can be used to look at individual columns either by name or column
number.

Scripting | Script Functions

page 509

The API
The API is deliberately simple. The normal flow is as follows:

var oConn = _odbc.connect("MyDSN");
var oStmnt = oConn.exec("select * from MyTable where ...");
while (true) {
 var oRow = oStmnt.fetchRow();
 if (oRow == null) break;
 // User code to examine oRow.columnName as desired
}
oStmnt.close();
oConn.disconnect();
_odbc.term();

If you prefer to do individual column access you could use:

...
while (true) {
 var rc = oStmnt.fetch(); // fetch, not fetchRow
 if (rc != 0) break; // at end-of-fetch it will be ODBC standard 100
 var oCol = oStmnt.col(3); // or some column number ... or
 var oCol = oStmnt.col(colName);
 // User code to examine oCol.value
}
...

_odbc Object Details

Prop/Func Remarks

init() Initialize the ODBC system, get "handles" etc. In practice, this is not called
explicitly since any .connect call will invoke it as needed.

connect(DSN) Connect to the database as identified by the DSN which you setup previously
using an ODBC Administrator tool. Returns a connector object or null on
failure (see rc).

term() Close off all ODBC access. Close all statements. Disconnect all connections.
Release all ODBC handles.

rc The latest return code from the underlying ODBC call. Often 0.

diagnostic A message related to the underlying ODBC call. Often "".

Scripting | Script Functions

page 510

Connector Object Details

Prop/Func Remarks

exec(SQL) Execute an SQL statement on this connection. Returns a
statement object or null. Non-query statements return null. Check rc.

disconnect() Disconnect from this connection. Close any statements. Free resources.

rc The latest return code from the underlying ODBC call. Often 0.

diagnostic A message related to the underlying ODBC call. Often "".

DSN Returns the DSN string, in case you forgot it.

rowCount Returns the number of rows that were affected by your non-query statement.
(-1 if a query statement)

colCount Returns the number of columns in your query statement.

Statement Object Details

Prop/Func Remarks

fetch() Advances to the next row in the query result. Returns a return code. 0 - Ok, 100 -
end-of-fetch, else a standard ODBC error code.

col(col#OrName) Returns a column object or null if there is no such column. Column numbers
go from 1 to colCount.

fetchRow() Advances to the next row in the query result and constructs and returns a
row object with the column names and values. Returns null on end-of-fetch.

close() Free any ODBC resources related to this statement.

rc The latest return code from the underlying ODBC call. Often 0.

diagnostic A message related to the underlying ODBC call. Often "".

colCount Returns the number of columns in your query statement.

row Returns the row number (starting at 1) of the just-fetched row.

Scripting | Script Functions

page 511

Row Object Details

Prop/Func Remarks

columnName columnValue

columnName columnValue

... ...

Column Object Details

Prop/Func Remarks

colNumber The column number: 1 to oStmnt.colCount

name The column name. May be "" for unaliased expressions.

maxLen The maximum length for this column.

value The value of this column. Known only after a fetch is done. The other properties
are known as soon as the connector object executes the statement.

Usage / Contexts / Performance
Remember that the intended usage is not to write your business application in JavaScript in a document
presentation tool. This is meant to add a few data items to what your main data-producing application
provided.

Establishing a connection to a database is quite slow - e.g. hundreds of milliseconds. That's a lifetime
compared to normal document generation processing. It is surely best if the data provided by the program,
specifically meant for that purpose, is complete. This JavaScript API for database access offers a port in a
storm, especially performance-wise, to augment that data. Don't abuse it and then complain about
performance.

Often a "Merge run" processes data for only a single document. In such a case, it's simple, you, of
necessity, make an ODBC connection, do your thing, and then terminate your ODBC access. There are no
magic options. That one document will pay the entire overhead of establishing a database connection.

If your Merge run processes data for multiple documents then you run afoul of the fact that at the end of
each document the JavaScript context is destroyed, all your JavaScript objects are gone and you start anew.
However, for the special (and 99%) case, of connecting to a single data source, that data source can be
kept open for the entire run -- across all switches of JavaScript context. In such a case you would make the
_odbc.connect(DSN) call in a Start-of-Job event script. In the Start-of-Document (or Data Merged) event
you would use the special reconnect call: oConn = _odbc.connect(). Notice that no DSN argument is
supplied and hence can only mean to reconnect to a ('the') prior connection. This is done without any

Scripting | Script Functions

page 512

disconnect/reconnect overhead. Hence the overhead of establishing the database connection is amortized
over all documents, over the entire Merge run.

Scripting | Script Functions

page 513

ODBC on Linux
The needed ODBC library (libodbc.so) is not shipped with DocOrigin. It is your responsibility to create the
needed infrastructure. That requires the 64bit ODBC library and the applicable ODBC connector(s) for
whichever database system(s) you intend to use. And you must create/maintain the configuration files: i.e.
odbc.ini and odbcinst.ini. DocOrigin does not provide guidance on how to setup your ODBC
configuration.

There is more than one implementation of ODBC support for Linux. As a small start you could try:

sudo yum install unixODBC

but as said before, you will also need the applicable ODBC connector(s) and do the needed configuration.

The DocOrigin post-installation process (POSTINSTALL) looks for the ODBC library in /usr/lib64/libodbc.so.
If found, it creates a symbolic link from DO/Bin/libodbc.so to that library. If your installation of ODBC puts
the library in some other place be sure to create the DO/Bin/libodbc.so symbolic link to wherever it is
located. DocOrigin does a dynamic load of that library via that symbolic link.

Scripting | Script Functions

page 514

•
•
•
•
•

•

•
•
•

•
•
•
•
•

_os
These functions access certain operating system features.

Functions
_os.exit(rc) - exit program immediately with this return code value.
_os.getClipboard() - (as of 3.1.002.07) fetch the text from clipboard.
_os.getCurDir() - fetch the program's current working directory name.
_os.getenv(name) - fetch the value of environment variable name.
_os.getMergeVersion() - fetch version of Merge that is running, e.g. "3.0.005.07" Prior to 3.1.002.04, this was
available in only Merge. As of 3.1.002.04, any script-supporting process can use this function to get its version
string. Also, as of 3.1.002.04, the synonym function name _os.getVersion() was introduced.
_os.getpid() - (as of 3.0.003.19) get the operating system's process identifier for the running process. This can be
useful in coming up with unique identifiers/file names since process ids don't get reused quickly — often not
until a reboot occurs.
_os.getHostname() - (as of 3.2.001.04) fetch the hostname.
_os.getProgramPath() - fetch the full path and filename of the currently executing program.
_os.getustr() - (as of 3.0.003.19) get a fairly short unique string, based on time to the millisecond. The string uses
only those characters that are allowed in file names.
_os.setClipboard(text) - (as of 3.1.002.07) set text to clipboard.
_os.setCurDir(newdir) - change the program's current working directory.
_os.sleep(millisecs) - pause execution for millisecs milliseconds.
_os.type - returns either "Windows" or "Unix" as applicable.
_os.userName - returns the login id of the user running the DocOrigin application. Note that this could be a
network user, a services user, a web server user, ... not necessarily the human user who clicked a mouse or hit
enter.

Scripting | Script Functions

page 515

_page
_page is a JavaScript object which represents the DOM for a given page object. This object is created
dynamically and automatically for the page on which the object using _page exists.

_page is undefined for the form object as a form is not on a page. If you choose to use the _page object it
must be on a page object or somewhere in a page's descendant tree of objects.

The _page object does NOT refer to all pages in the document. Rather it refers to only those instances of
pages on which the object referring to _page resides. For example, if the object whose script references
_page is, say the Amount field, and that field is on a page named LayoutTwo, then that _page reference
will be to only the various instances of the page named LayoutTwo. As usual, _page[0] would refer to the
first such instance and _page[1] would refer to the second such instance, etc.

To refer to all the pages in a document, you do NOT use the _page object. The following script excerpt
shows one way to refer to all the pages in a document. By looking in the Form Explorer panel you can see
that all pages are the immediate children of the form object. Hence, when wanting to refer to all the pages
in a document you are wanting to refer to all the immediate children of the form object.

 for (var r = _document._firstChild; r; r = r._nextSibling) {
 _logf("Page '%s'\n", r._fullName);
 // ... do your desired page processing
 }

When working at the page level it is good to remember that every object (except the form object) has a
_pageNumber property. Of course, that is valid only on or after the "Pagination Completed" event. There is
also an _auto.PageNumber property but its usage is discouraged. Clearly, it does not provide the page
number of the _auto object -- that would be nonsensical. Rather it provides the page number of the current
global object, the this object, i.e. the object in which the _auto.PageNumber reference is made. If you want
to know the page number of something then use the _pageNumber property reference on that something
object.

Also, consider _auto.PageCount as a means to know how many pages exist in the document.

Somewhat curiously, you can also use this._pageCount or this._numberOfPages. It seems that everywhere
you look you can find the number of pages in the document.

Notice the unusual property naming -- no leading underscore. That is because _auto is a
"synthesized" object, not a user object on the form, and hence no collision can occur with the
property name PageCount. As it happens, in another atypical way, PageCount is a case-insensitive
property name of the _auto object. _auto.PC is a valid synonym.

Scripting | Script Functions

page 516

•
•

•
•
•

_parser
Parse delimited or fixed-format records

These routines are used to convert data from either fixed-column format or delimited (eg tab-delimited,
comma-delimited) to a useable javascript form.

Functions
_parser.delimited(record, names [, delimiter [, quote [, trim]]]) - convert a delimited (eg tab-delimited) record.
_parser.delimitedToXml(fromfile, tofile, names [, delimiter [, quote [, trim]]]) - convert a delimited file to an
XML file.
_parser.fixed(record, format) - convert a fixed-column data record.
_parser.fixedToXml(fromfile, tofile, format) - convert a fixed-column data file to an XML file.
_parser.parms(record) - (As of 3.1.001.03) convert a string with name="value" syntax to a JavaScript object of
properties and values.

Scripting | Script Functions

page 517

_parser.delimited
Convert comma or tab-delimited records.

Syntax
_parser.delimited(record, names [, delimiter [, quote [, trim]]])

Parameters
record is the text to be parsed. Trailing newline and carriage returns are ignored (not returned as data).

names is an array of field names. The record is assumed to have these fields in it in this order. This allows
the resulting output to be treated like an array of parsed values. If any individual names array element is
set to null rather than a field name, the corresponding data field is excluded from the output, i.e. the field
is ignored. If a names parameter is set to null the fields will instead be named 0, 1, ... sequentially.

delimiter is optional and defaults to ',' - a comma. Set this to '\t' for tab-delimited data records or '
' for blank-delimited files.

quote character is optional and defaults to the double-quote character. This is the type of quotation
character that surrounds strings in the data stream. You might want to set to "'" to use single-quotes.

trim parameter is optional (defaults to false). If present and set to true, returned values will have
leading as well as trailing blanks removed.

Returned Value
The returned value of this function is a JavaScript object whose properties are the names from the
names parameter and values are the associated values from the data record. If the record is incorrectly
formatted and cannot be parsed, the return value is null.

Description
This routine is used to parse a single delimited record and assign names to all the values in that record.

Example

var names = ["first", "second", "third", "fourth"];
var record = '"one","two","three"';
var obj = _parser.delimited(record, names);

if (obj) {
 _message("obj.first=%s obj.second=%s", obj.first, obj.second);
} else {
 _message("Error parsing line");
}

Of course, normally one would have read in a record rather than having it hard-coded, but this is an example!

Scripting | Script Functions

page 518

This is equivalent to having set

obj.first = "one";
obj.second = "two";
obj.third = "three";
obj.fourth = null;

See Also

_parser.delimitedToXml _parser.fixed _parser.fixedToXml _parser.parms

Scripting | Script Functions

page 519

•
•
•

_parser.delimitedToXml
Delimited data to an XML file.

Syntax
_parser.delimitedToXml(fromfile, tofile, names[, delimiter [, quote [, trim]]])

Parameters
fromfile existing file containing delimited records.

tofile name of a new file that will get created with the XML equivalent of the fromfile.

names is an array of field names. The record is assumed to have these fields in it in this order. This allows
the resulting output to be treated like an array of parsed values. If any individual names array element is
set to null rather than a field name, the corresponding data field is excluded from the output, i.e. the field
is ignored. If a names parameter is set to null the fields will instead be named 0, 1, ... sequentially.

delimiter is optional and defaults to ',' - a comma. Set this to '\t' for tab-delimited data records or '
' for blank-delimited files.

quote character is optional and defaults to the double-quote character. This is the type of quotation
character that surrounds strings in the data stream. You might want to set to "'" to use single-quotes.

trim parameter is optional (defaults to false). If present and set to true, returned values will have
leading as well as trailing blanks removed.

Returned Value
A return value of zero indicates a successful conversion. Other possible error return codes:

-904 - could not open the fromfile.
-905 - could not open the tofile.
-906 - a conversion error occurred converting one of the data records.

Description
This routine is used to convert an entire delimited file into XML. Each line of data in the source fromfile is
considered a single record in the output tofile and will be surrounded by a <document> ... </document>
XML structure.

See Also

_parser.delimited _parser.fixed _parser.fixedToXml _parser.parms

Scripting | Script Functions

page 520

_parser.fixed
Convert fixed-column records

Syntax
_parser.fixed(record, format)

Parameters
record is the text to be parsed.

format is a javascript Object that describes the structure of the data record. This will typically be a
javascript constant description such as:

{first: {from:10, width:30, trim:'right'},
 second: {from:50, width:5, trim:'both'},
 ...}

As can be seen from the above example each data field (first, second, etc) has an associated definition of
how to extract the requisite data. from defines the data column where the data field begins (first column is
number 0). width is the field's column width. trim is an optional setting that indicates whether leading or
trailing blanks should be removed automatically:

left removes leading blanks.
right removes trailing blanks.
both removes leading and trailing blanks.
none does not remove any blanks. This is the default setting.

Returned Value
The returned value of this function is a JavaScript object whose properties are the names from the names
parameter and values are the associated values from the data record. If the record is incorrectly formatted
and cannot be parsed, the return value is null.

Description
This routine is used to parse a single fixed-format record and assign names to all the values in that record.

Example
The following example is similar to what the _parser.fixedToXml function will do - to convert an entire
fixed-format file to XML. However, unlike the _parser.fixedToXml function, this code creates a single
document structure with each record from the file being enclosed in <DetailLine>..</DetailLine> tags.

Consider a file C:/DocOrigin/test/Fixed.txt that contains fix-format records. Here's a sample of some of
those records:

Scripting | Script Functions

page 521

 1 2 3 4 5 6 7 8
9
0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567
890123456789012
 1 AK036 Happy Cat Activity Centre BlEach 23.12 0.00
23.12
 0 SC180 S/P Swing N Play Cat Toy*DELEach 1.10 7.00
0.00
 3 AH589 Atlas 10 Pet Carry Entry LvlEach 22.00 7.00
20.46
 4 AH590 Atlas 20 Pet Carry Entry LvlEach 27.50 7.00
25.58
 2 VP611 VP Super All Wormer Cat 4 TaEach 9.25 7.00
8.60
 ...

The following code will read all records in a file and convert it to an equivalent XML file.

var sFormat = { Quantity:{from:6, width:6, trim:'both'},
 Code:{from:16, width:7, trim:'both'},
 Description:{from:27, width:28, trim:'both'},
 Price:{from:64, width:10, trim:'both'},
 Discount:{from:74, width:10, trim:'both'},
 Charged:{from:84, width:10, trim:'both'},
 Net:{from:94, width:12, trim:'both'} };

var fp = _file.fopen("C:/DocOrigin/test/Fixed.txt", "r"); // Open the data file
if (!fp) _message("File open error");

var xml = new XmlFile("C:/DocOrigin/test/Fixed.xml"); // Open the xml output file

var sRec;
var obj;

while (sRec = fp.fgets()) { // read each record
 if (sRec.length < 5)continue;

 obj = _parser.fixed(sRec, sFormat); // converts record
 if (obj) {
 xml.DetailLine = obj; // format and write as xml
 }
}

fp.fclose();
xml.close();

This will produce a new file C:/DocOrigin/test/Fixed.xml that looks like:

<?xml version="1.0" encoding="UTF-8"?>
<XMLData>
<Document>

Scripting | Script Functions

page 522

 <DetailLine>
 <Quantity>1</Quantity>
 <Code>AK036</Code>
 <Description>Happy Cat Activity Centre Bl</Description>
 <Price>23.12</Price>
 <Discount>0.00</Discount>
 <Charged>23.12</Charged>
 <Net>23.12</Net>
 </DetailLine>
 <DetailLine>
 <Quantity>0</Quantity>
 <Code>SC180</Code>
 <Description>S/P Swing N Play Cat Toy*DEL</Description>
 <Price>1.10</Price>
 <Discount>7.00</Discount>
 <Charged>0.00</Charged>
 <Net>0.00</Net>
 </DetailLine>
 <DetailLine>
 <Quantity>3</Quantity>
 <Code>AH589</Code>
 <Description>Atlas 10 Pet Carry Entry Lvl</Description>
 <Price>22.00</Price>
 <Discount>7.00</Discount>
 <Charged>20.46</Charged>
 <Net>61.38</Net>
 </DetailLine>
 <DetailLine>
 <Quantity>4</Quantity>
 <Code>AH590</Code>
 <Description>Atlas 20 Pet Carry Entry Lvl</Description>
 <Price>27.50</Price>
 <Discount>7.00</Discount>
 <Charged>25.58</Charged>
 <Net>102.30</Net>
 </DetailLine>
 <DetailLine>
 <Quantity>2</Quantity>
 <Code>VP611</Code>
 <Description>VP Super All Wormer Cat 4 Ta</Description>
 <Price>9.25</Price>
 <Discount>7.00</Discount>
 <Charged>8.60</Charged>
 <Net>17.20</Net>
 </DetailLine>
 ...
</Document>
</XMLData>

See Also
 _parser.delimited _parser.delimitedToXml _parser.fixedToXml _parser.parms

Scripting | Script Functions

page 523

•
•
•
•

_parser.fixedToXml
Fixed-column data file to XML.

Syntax
_parser.fixedToXml(fromfile, tofile, format)

Parameters
fromfile existing file containing fixed-column data records.

tofile name of a new file that will get created with the XML equivalent of the fromfile.

format is a javascript Object that describes the structure of the data record. This will typically be a
javascript constant description such as:

{first: {from:10, width:30, trim:'right'},
 second: {from:50, width:5, trim:'both'},
 ...}

As can be seen from the above example each data field (first, second, etc) has an associated definition of
how to extract the requisite data. from defines the data column where the data field begins (first column is
number 0). width is the field's column width. trim is an optional setting that indicates whether leading or
trailing blanks should be removed automatically:

left removes leading blanks.
right removes trailing blanks.
both removes leading and trailing blanks.
none does not remove any blanks. This is the default setting.

Returned Value
A return value of zero indicates a successful conversion. Other possible error return codes:

-904 - could not open the fromfile.
-905 - could not open the tofile.
-906 - a conversion error occurred converting one of the data records.
-907 - the format definition contains invalid or incorrect information. A field could not be extracted.

Description
This routine will convert an entire file of fixed-format records into an equivalent XML file.

Example
Consider a file C:/DocOrigin/test/Fixed.txt that contains fix-format records. Here's a sample of some of
those records:

Scripting | Script Functions

page 524

 1 2 3 4 5 6 7 8
9
0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567
890123456789012
 1 AK036 Happy Cat Activity Centre BlEach 23.12 0.00
23.12
 0 SC180 S/P Swing N Play Cat Toy*DELEach 1.10 7.00
0.00
 3 AH589 Atlas 10 Pet Carry Entry LvlEach 22.00 7.00
20.46
 4 AH590 Atlas 20 Pet Carry Entry LvlEach 27.50 7.00
25.58
 2 VP611 VP Super All Wormer Cat 4 TaEach 9.25 7.00
8.60
 ...

The following code will convert that file to an equivalent XML file.

var from = "C:/DocOrigin/test/Fixed.txt";
var to = "C:/DocOrigin/test/Fixed.xml";

var sFormat = { Quantity:{from:6, width:6, trim:'both'},
 Code:{from:16, width:7, trim:'both'},
 Description:{from:27, width:28, trim:'both'},
 Price:{from:64, width:10, trim:'both'},
 Discount:{from:74, width:10, trim:'both'},
 Charged:{from:84, width:10, trim:'both'},
 Net:{from:94, width:12, trim:'both'} };

_parser.fixedToXml(from, to, sFormat);

This will produce a new file C:/DocOrigin/test/Fixed.xml that looks like:

<?xml version="1.0" encoding="UTF-8"?>
<XMLData>
 <Document>
 <Quantity>1</Quantity>
 <Code>AK036</Code>
 <Description>Happy Cat Activity Centre Bl</Description>
 <Price>23.12</Price>
 <Discount>0.00</Discount>
 <Charged>23.12</Charged>
 <Net>23.12</Net>
 </Document>
 <Document>
 <Quantity>0</Quantity>
 <Code>SC180</Code>
 <Description>S/P Swing N Play Cat Toy*DEL</Description>
 <Price>1.10</Price>
 <Discount>7.00</Discount>
 <Charged>0.00</Charged>

Scripting | Script Functions

page 525

 <Net>0.00</Net>
 </Document>
 <Document>
 <Quantity>3</Quantity>
 <Code>AH589</Code>
 <Description>Atlas 10 Pet Carry Entry Lvl</Description>
 <Price>22.00</Price>
 <Discount>7.00</Discount>
 <Charged>20.46</Charged>
 <Net>61.38</Net>
 </Document>
 <Document>
 <Quantity>4</Quantity>
 <Code>AH590</Code>
 <Description>Atlas 20 Pet Carry Entry Lvl</Description>
 <Price>27.50</Price>
 <Discount>7.00</Discount>
 <Charged>25.58</Charged>
 <Net>102.30</Net>
 </Document>
 <Document>
 <Quantity>2</Quantity>
 <Code>VP611</Code>
 <Description>VP Super All Wormer Cat 4 Ta</Description>
 <Price>9.25</Price>
 <Discount>7.00</Discount>
 <Charged>8.60</Charged>
 <Net>17.20</Net>
 </Document>
 ...
</XMLData>

See Also

 _parser.delimited _parser.delimitedToXml _parser.fixed _parser.parms

Scripting | Script Functions

page 526

_parser.parms
(As of 3.1.001.03)

Convert name=value records

Syntax
_parser.parms(record)

Parameters
record is the text to be parsed. Trailing newline and carriage returns are ignored (not returned as data).

Returned Value
The returned value of this function is a JavaScript object whose properties are the names parsed from the
record and values are their associated values. If the record is incorrectly formatted no messages are
issued and a best efforts basis is made to parse the record.

Description
This routine is used to parse a name1=value1 name2=value2 ... style record and build up a JavaScript
object.

Example

var record = 'foo=bar fullName="Jane Doe" party:'O''Brian' IExist"
var obj = _parser.parms(record);

Of course, normally one would have read in a record rather than having it hard-coded, but this is an example!

This is equivalent to having set

obj.foo = "bar";
obj.fullName = "Jane Doe";
obj.party = "O'Brian";
obj.IExist = null;

Either single quotes or double quotes can be used. But the end quote must match the starting quote
character in any given value. If the starting quote character needs to appear in the value then it must be
doubled up. See 'O''Brian' in the example.

Name/Value pairs can be separated by space, tab, comma, or semicolon.

Assignment operators can be either equals (=) or colon (:).

If a name is not followed by an assignment operator it will be given a value of null.

If an assignment operator and a value are not preceded by a name, they will be discarded.

Scripting | Script Functions

page 527

See Also

_parser.delimited _parser.delimitedToXml _parser.fixed _parser.fixedToXml

Scripting | Script Functions

page 528

•
•
•
•

•

•
•
•

_printer - output configuration settings

(Merge only)
The _printer set of functions give access to a variety of Merge output configuration settings.

DocOrigin Merge allows one or more printer output configurations to be used at the same time. Each has a
unique printername such as PDF or LJ4.

The _printer functions are most likely used in the Ready to Print or Start Next Print Driver script events.

When multiple output configurations are used, some of these functions allow you to control which will be
active or inactive at any given time.

Functions
_printer.first() - return name of first active output configuration. See also _printer.next().
_printer.getDocNum([printername]) - return the number of documents printed to this output configuration.
_printer.getDriver() - returns the printername of the current active output configuration.
_printer.getPageCount([printername]) - return the # of pages printed for the current document for the named
(default current) output configuration.
_printer.getTotalPageCount([printername], [bIncludeNumberedPages], [bIncludeUnnumberedPages])

- return the total # of pages printed for the named (default current) output configuration.

By default, bIncludeNumberedPages is true, and bIncludeUnnumberedPages is false.

Typically, the unnumbered pages are for preamble material, separator pages, or terms and conditions
pages.

The numbered pages are typically the 'meat' of the document.

By default, you get back the count of the numbered pages only.

Note: The final two optional parameters were added in 3.0.002.06

_printer.getOutputFile([printername]) - return the name of the file that this output configuration is writing to.
_printer.isDefined(printername) - is the named printer defined in this Merge run? true/false
_printer.next() - return the name of next active output configuration.

This assumes that _printer.first() has been called. Returns null if no further active output
configurations have been specified.

Note that output configurations have both a printername and a printertype. Several of the _driver
routines use printername as a parameter. The printertype is a generic name for the general type
of output (PDF, PCL, HTML, etc.) that may apply to several distinct printernames. For example your
-config option might list multiple PDF related .prt files. Each would have a printertype of PDF but
each would have a distinct printername such as PDF and PDF2. Each output configuration could
have separate settings - such as having one driver combine all documents into a single output file
while the other creates individual files.

Scripting | Script Functions

page 529

•
•

•

•
•
•

•
•

•

•
•
•

•
•

_printer.select(printername) - make this printername active, all others inactive.
_printer.setActive(true/false [, printername]) - make an output configuration active or inactive. Use "*" for
printername to apply to all output configurations (Added in 3.1.002.01).
_printer.setOption(name, value [, printername]) - set printer-specific options.

Typically overriding config .prt file settings. eg)

_printer.setOption("Select_Arial", "\E(s1p10v0s0b16602T", "LJ4");

_printer.setOption("spoolerDocName, "Invoice "+InvoiceNumber._value);

_printer.setOutputFile(filename [, printername]) -set the name of the file to write the output to. See below.
_printer.setPDFAllowAccess(true/false) - set the PDF 'Allow Access' permission.
_printer.setPDFAllowChange(type) - set the PDF 'Change' permission.

Options are Insert, Fields, Commenting, or All.

_printer.setPDFAllowCopy(true/false) - set the PDF 'Allow Copy' permission.
_printer.setPDFAllowPrinting(type) - set the PDF 'Printing' permissions.

Options are Yes, No, LoRes, or HiRes.
Note, Yes=HiRes

_printer.setPDFInfo(name, value) - set name/value data for the PDF /Info section

This stores name/value pairs that will be written to the PDF /Info section. This is for informational
purposes only.

_printer.setPDFModifyPassword(password) - specify the PDF file modification password.
_printer.setPDFOpenPassword(password) - specify the PDF file open password.
_printer.addPDFAttachment(name [, description]) - add an attachment to PDF attachments list for current
document.
_printer.clearPDFAttachments() - clear list of PDF attachments for current document.
_printer.resetPDFAttachments() - init PDF attachments list from command line -attachment options for
current document.

Scripting | Script Functions

page 530

_printer.setOutputFile

Syntax
_printer.setOutputFile(filename [, printername])

Parameters
The setting of the output file name can take effect only when output generation for the current document,
if any, finishes, and output generation for the next document begins.

filename - The file names provided here can use embedded [fieldName] references to dynamically name
the output file based on the current data values. See also the many % substitutions as described in any .prt
file and at File Naming Conventions.

Further, output file names can be prefaced with: prt::, file::, or run:: to more explicitly identify
output destinations.

printername - In some systems, a printer name can include a slash (/). That makes the name look like a file
name and hence it is a good idea to preface actual printer names with prt::. And conversely, it could help
to specify that a file name is meant to be a real, on disk, file name, by prefacing the name with file::.

[Rare: If file:: is used with a WIN-based output configuration, it signifies that Merge is to instruct the
Windows printer driver to send its raw output to a file on disk. This works for only some Windows printer
drivers but has been known to be of use to capture such things as the raw ZPL destined for a Zebra label
printer. When using this option with a WIN output configuration you need to identify that actual Windows
printer that the output would normally go to if you weren't choosing to direct it to a file. You do that by
using the -outputRef command-line option. It identifies an actual printer, whose Windows driver will be
asked to send its output to your nominated file:: location instead. Your mileage may vary.]

The use of the run:: prefix is described in Output Filenames / Options. It is exceptionally handy, especially
during form+data development where quick onscreen results can be seen by passing, says, PCL output to
GhostPCL to render it to a PDF format, or any other variation you might think of re: doing post-processing
on whatever output was generated.

On Linux systems, it is also possible to suffix the output destination name with ,p. This instructs Merge to
interpret the destination name as a program name (e.g. lpr) and to pipe the generated output to that
program.

Scripting | Script Functions

page 531

PDF Security
DocOrigin provides a variety of methods for applying PDF Securities. A table for each option is shown
below.

Design Option
To access PDF Security settings in Design, select the menu option Format > Form Properties > PDF
Security Tab.

Scripting | Script Functions

page 532

PDF Security CLO (Command Line Option), JavaScript, Configuration File, and Design Options
The table below shows the required settings for each option. Option type details are provided when not self-explanatory.

Note: Once you apply PDF Security, you are required to define all settings you want to allow. For example, if you only supply the CLO
-PDFAllowChange "InsertDeleteRotate", printing, copying, and other options will be disabled. Therefore, you should provide all options
required for the user.

CLO JavaScript PRT Design

-PDFOpenPasswordRequired
"Yes/No"
-PDFOpenPassword "password"

_printer.setPDFOpenPassw
ord("password");

<OpenPasswordRequired>Yes/No</
OpenPasswordRequired>
<OpenPassword>password</
OpenPassword>

-PDFModifyPasswordAllowed
"Yes/No"
-PDFModifyPassword "password"

_printer.setPDFModifyPass
word("password");

<OpenPasswordRequired>Yes/No</
OpenPasswordRequired>
<OpenPassword>password</
OpenPassword>

 Note: To apply any PDF Security options below, you must apply at least one password, either Open, Modify, or both. If you want to limit
particular change options such as printing, copying, or any other options, we suggest adding the Modify Password.

-PDFPrintCapability "type"
Acceptable values: "none" or (leave
missing/empty for Disable),
"lowResolution", "highResolution"

_printer.setPDFAllowPrintin
g("type")
Acceptable values: "none",
"LoRes", "HiRes"

<PrintCapability>"type"</
PrintCapability>
Acceptable values: "none" or (leave
missing/empty for Disable),
"lowResolution", "highResolution"

Scripting | Script Functions

page 533

•

•

•

•

CLO JavaScript PRT Design

-PDFAllowChange "type"
Acceptable values (control is
accumulative):

none or (leave missing/empty
for Disable) - no changes
InsertDeleteRotate - insert,
delete and rotate pages
FillFields - fill and sign
FillFieldsCommenting -
comment
All - all of the above except
extract pages

_printer.setPDFAllowChang
e("type")
Acceptable values: "none"
or (leave missing/empty for
Disable), "Insert", "Fields",
"Commenting", "All"

<AllowChange>"FillFieldsCommenting
"</AllowChange>
Acceptable values: "none" or (leave
missing/empty for Disable),
"InsertDeleteRotate", "FillFields",
"FillFieldsCommenting", "All"

-PDFAllowCopying "Yes/No" _printer.setPDFAllowCopy("
true/false");

<AllowAccessibility>Yes/No</
AllowAccessibility>

-PDFAllowAccessibility "Yes/No" _printer.setPDFAllowAccessi
bility("true/false");

<AllowAccessibility>Yes/No</
AllowAccessibility>

Scripting | Script Functions

page 534

Test/Preview PDF Security Settings
To preview your options, open the PDF properties in your PDF viewer. The Adobe Acrobat XI Pro PDF
Security settings are shown below.

To see more details, press the Change Settings... button of the right of the Security Method.

Scripting | Script Functions

page 535

Scripting | Script Functions

page 536

_printf
Format and write text to the console

Syntax
_printf(format [, p1 [, p2...]])

Parameters
format is a template of the text to be written to the file. It is similar to a C format string where embedded
%s, %d, and %f markers that get replaced by parameters passed to _printf.

p1, p2, ... are the optional parameters to be substituted into the format string.

Returned Value
None.

Description
The string format may contain substitution formatting codes -

%d - gets replaced by an integer number.
%D - gets replaced by an integer number that will have commas every 3 digits as in 1,234,567 (as of
3.0.004.05).
%s - gets replaced by a text string.
%S - same as %s except when the data value is a JavaScript structure or array. In these cases, the
result is 'prettified' by adding indents and carriage returns (as of 3.1.002.06).
%f - gets replaced by a decimal or floating number.
%F - gets replaced by a decimal or floating number with commas every 3 digits (as of 3.0.004.05).
%x - gets replaced by an integer as a series of hexadecimal digits (lowercase)
%X - gets replaced by an integer as a series of hexadecimal digits (uppercase)
%E - gets replaced by the name of the script event currently being processed. Example: "OnEndMerge"
(as of 3.0.004.09).
%% - gets replaced with a single % character.

Between the % and the formatting code, you may add a single number that specifies the character width of
the resulting text. For decimal numbers (%f code), you may also specify a format such as %10.4f - where
the first number indicates the overall output width and the second the number of digits to display after the
decimal point.

Each "%" code must be matched by a parameter p1, p2 etc. The parameter will get converted to the
appropriate format and inserted into the output string.

There is a reasonable string limitation which can be formatted - about 5000 characters. If resulting string is
too long it gets truncated and appended with "..." in the end. Do not format very long strings - it is not a
fast process.

Scripting | Script Functions

page 537

Example

 _printf("Hello World"); // prints one line to the console
 _printf("name=%s, city=%s", "Tony", "Paris"); // prints 'name=Tony, city=Paris'
 _printf("value=%4.2f", 3.1415); // prints 'value=3.14'
 _printf("value=%4.2F", 12345.67); // prints 'value=12,345.67'
 _printf("num=%D", 1234567); // prints 'num=1,234,567'

See Also

fp.fprintf _logf _message _sprintf _tracef

Note that when Merge is run from within Design, using PDF Preview... and Merge Test... on the
Tools menu, the console window output is suppressed. Instead, _printf() output is redirected to
the Merge log file.

Scripting | Script Functions

page 538

_profile
Access Profile files

DocOrigin allows the use of simple text Profile files (or "ini" files) to provide data that can be loaded via
script. This mechanism can be used to customize your form design via an external file.

A Profile file is one that is typically loaded via Merge command-line option (-profile) prior to any
document or script processing. There is also a _file.readIniFile function which is recommended if you wish
to simply read a .ini file into your JavaScript code.

True profile files offer automatic actions. See Profile Files. Please differentiate, in your mind, ordinary .ini
files from true, action-oriented, profile files. You can continue to use _profile with ordinary .ini files but
remember that each _profile.load() wipes out any earlier profile info. It may curtail the functionality of
the data-driven, per document, actions specified in a previously loaded profile. It may cause the [!profile
xxx] "embedded field" definitions used in the form, but long forgotten by the scripter, to fail. Definitely
consider using the _file.readIniFile function (as of 3.1.002.10).

On the other hand, it may be that the true profile file that you want to load will be determined by values in
the data stream. E.g. you may wish to load the profile for Acme2 instead of the usual one for Acme. You
cannot specify the needed profile file name on the Merge command line. So it still makes perfect sense to
use _profile.load() to load a true profile file. Do so during the Start-of-Job event as it is in only that
scenario that the [*action] automatic actions will be performed. (Of course, they are also performed if
the -profile command-line option is used.)

Profile File Format
Profile files are simple text files. The file is required to contain either utf8 or plain ASCII characters. The files
consist of lines of key=value settings. One can optionally add a [section] name which indicates that all
key assignments that follow are to be considered part of this section name. For example:

; An example profile file. (any text following a semicolon is a comment)
; Blank lines are ignored

Name=Joe Smith

[Address]
city = San Jose
state = "California"

Any name=value pairs before the first (if any) [section] line are considered part of the default section,
which internally has the section name "". You can continue the definition of the default section after other
sections by using a section specification of [].

Note that these are NOT DocOrigin/Merge configuration files, they are for you the programmer to
use for building your form/document application.

Scripting | Script Functions

page 539

The key names can be any string of characters, although it is recommended that they be alphanumeric for
clarity. Blank lines and comments can be interspersed throughout the file. The value can optionally be
contained within quotes (double or single). The value strings are stripped of leading and trailing blanks or
tabs. If leading/trailing blanks are required you must quote the string in order to preserve the blank. Within
the value string you can use the following special sequences:

\\ - is replaced by a single \
\n - is replaced by a newline (hex 10) character
\r - is replaced by a linefeed (hex 13) character
\t - is replaced by a tab character
\E - is replaced by the escape character (hex 1B).
\xnnnn - the 4 digits nnnn are interpreted as a single hex unicode character.

As of version 3.1.002.06, multi-line values can also be defined using "heredoc" notation, as in

Address = <<<END
123 Sesame St,
San Jose,
California
END

The END in the above example can be any text you like. All text up to the first line with that same text string
at the start of a line is assigned to the key name.

Profiles can also contain directives to "include" another file.

; the following loads the contents of master.ini as well.
@master.ini

; this conditionally loads 'secondary.ini'
; it does not complain if the file does not exist.
@@secondary.ini

If an explicit file path is not given, the file is assumed to be in the same directory as the profile file it was
referenced from.

Text Substitution [Define]
(As of 3.1.002.04)

Profile files support a mechanism to create shorthand names for longer paths or other text that is
repeated, possibly many times, within the files. The [Define] section is used for this purpose

[Define]
mypath = //server3/share7/AppName/Archives/MyTests

[]
myfile = {mypath}/myOutput.pdf

Scripting | Script Functions

page 540

Everywhere within the profile file processing where a name is found between {braces}, it will be replaced
by the text defined within an earlier [Define] section. If the name within the braces is not found, the original
text (and braces) will remain as-is.

Opening a Profile File
_profile.load(filename) - opens a new profile file and replaces any currently stored profile settings.

Sorry. No return code is provided. You may want to check for the file's existence beforehand.

Accessing Profile File Settings
You can access a profile file setting with the following script function:

_profile.get(key, [section]);

The section name is optional and required only for values that are stored under a profile section name.
Section names and key names are case-insensitive.

this._value = _profile.get("Name"); // set to "Joe Smith" using the above profile file.
this._value = _profile.get("city", "Address"); // set to "San Jose" using the above
profile

If the desired key does not exist then null will be returned.

Enumerating Section keys
You can enumerate the names of all keys within a section using the following two calls:

_profile.getFirstKey(section); - returns the first key in the section or null. _profile.getNextKey(); -
returns the next key in the section or null.

Typical usage might be:

for (k=_profile.getFirstKey('abc'); k; k=_profile.getNextKey()) {
 ... do something with key k
}

To enumerate the keys before the first, if any, [section] entry, use "" as the section name.
Note that only one _profile enumeration may be in progress at a time. Calling _profile.getFirstKey will
cancel any current enumeration processing.

Enumerating all Sections
_profile.getFirstSection(); - returns the first section name in the profile.
or null. _profile.getNextSection(); - returns the next section name or null.

Note that the default section name is "", so the section name returned may be a zero-length string. Your
test for completion must distinguish between a null/empty string and null itself.

Scripting | Script Functions

page 541

for (s=_profile.getFirstSection(); s !== null; s=_profile.getNextSection())
_message("next section name is '%s'", s);

Extended Profile usage within Merge
See the Profile Files section of Merge for additional Merge-only features and handling of profile files.

See Also

_file.readIniFile _file.readPrmFile

https://docs.docorigin.com/reference-manual/scripting/script-functions/_file-read-write-files#:~:text=of%203.0.003.13).-,_file.readPrmFile,-(fileName)

Scripting | Script Functions

page 542

_prompt
(Windows only) (As of 3.1.002.06)

Ask the user for input. Prompt user for OK/Cancel, Yes/No, Text, Date.

Syntax
_prompt(type, message [, default | choicelist])

Parameters
type is the type of popup Windows dialog to display.

Choices for type

 OKCancel - user can press OK or Cancel button.
 YesNo - user can press Yes or No button.
 YesNoCancel - user can press Yes, No, or Cancel button.
 String - user is prompted to enter a line of text.
 Password - same as String but text with echo stars instead a actual text entered.
 Choice - user can choose from a dropdown list of responses.
 ChoiceID - as above, but a tag associated with the selection is returned.
 Date - user can enter a calendar date.

The type parameter is case-insensitive, so 'YesNo', 'yesno' are both accepted.

message is a prompting message to be displayed at the top of the popup dialog. You can also set the dialog
title with this, by preceding the message text with the dialog title followed by a vertical bar. So something
like
"OK to Continue|Do you wish to continue this operation:"
will set both the dialog title and the message text.

default is the default value of the input. For YesNo, OKCancel, and YesNoCancel the default value can be
set to the same values as are returned by these calls - a value of 1 makes the Yes or OK button the default;
a value of 0 makes the No button the default; and a value of -1 makes the Cancel button the default.

For type String the default parameter will be displayed as the initial value of the input edit box.

For Date the default parameter is an initial date string in YYYYMMDD format.

For the Choice and ChoiceID types, the default parameter is not used, but a default choice can be set in
the choicelist (see below).

choicelist is a javascript structure or array listing the choices the user will select from. It can be a simple
array of strings, such as:

 ['choice 1', 'choice 2', choice 3']

Scripting | Script Functions

page 543

or a javascript structure such as

 { first:'choice 1', second:'choice 2', ...}

The Choice type option will always return the displayed string - so "choice 2" for instance. The ChoiceID
type option will instead return the index or attribute, so in the second case above it would return "second"
if the 'choice 2' option is selected. (if you use the simple array choices with the ChoiceID option, you'll get 0,
1, 2 etc. as the returned values.)

If you wish to specify a choice other than the first one as the default displayed choice, put an asterisk in
front of the choice value.

 { first:'choice 1', second:'*choice 2', ...}

Returned Value
The returned value depends on the type of the prompt call.

For the YesNo, OKCancel, and YesNoCancel options a value of 1 is returned for the Yes, or OK option; a
value of 0 for the No option; and a value of -1 for the Cancel option.

The Date option returns the selected date as a string formatted as YYYYMMDD.

The String and Choice and options return the entered or selected string.

The ChoiceID option returns the javascript associated property name or array index of the selected item,
rather than the item itself.

Examples

 if (!_prompt('yesno', 'Continue?|Do you wish to continue?)) return;
 name = _prompt('string', 'Enter your name:');
 date = _prompt('date', 'Select a new date:');
 date = _prompt('date', 'Select a new date:', '20181225'); // default to xmas 2018

See Also

_file.getSaveFileName

Scripting | Script Functions

page 544

_resolve
String substitution

Syntax
_resolve(text)

Parameters
text - a text string with all manner of placeholders to be replaced. These include [fieldname] or [!autofield]
placeholders, %x placeholders (see File Naming Conventions), and $X placeholders (see $X String
Substitutions).

Returned Value
A new string with substitutions done.

Description
This routine is a script equivalent of the [fieldname] or [!autofield] substitution available in normal text
labels. See the Auto/Embedded Fields section for a list of available [!autofield] variables.

If used in the context of Merge, i.e in the script in a form, where there is a Document DOM available,
_resolve looks for substrings of the form [fieldname] and replaces them with the field's value from the
current document. This function uses the same substitution logic as the Merge embedded fields - including
[!pagenum] etc. If the text between the left and right square brackets is not a known name the text and
square brackets are left unchanged in the text string.

Unlike _mergeEmbedded, in any context, e.g. Merge, RunScript, or Job Processing scripts, _resolve will also
do substitution of the % variables (typically date elements) that is done for output file names. See any .prt
file.

Further, any $X style variable will be substituted as well.

Note that the string is not presumed to be a file name, so no replacement of characters that are invalid for
file names is done. Also, backslashes are not converted to forward slashes. By contrast see
_file.resolveName.

Examples
In a Summary Section page, one might use:

 report._value = _resolve("The report for branch [branch] is in file: $T/
[branch]_%U.pdf");

See Also

Auto/Embedded Fields _auto _file.resolveName _mergeEmbedded

Scripting | Script Functions

page 545

_run
Run a user-specified program, passing user-specified command line parameters.

Syntax
_run(program [, args [, logStdout]])

Parameters
program is the fully qualified program name. (fully is preferred but sufficiently will do.)

args can be a text string that is the full command line or args can be a JavaScript object or array whose
properties define the argument list. If args is a text string, the string will simply be passed as-is to the called
program.

If args is a JavaScript object, each object property name becomes a DocOrigin-style -name command-line
option name and the property's value becomes its value. E.g. args.form = "$F/myForm.xatw";. For third-
party applications that don't use the -name value syntax, use a numeric property name, e.g. args[0] =
"3rd party command line part";.

logStdout (as of 3.1.002.07) is a boolean which specifies whether the stdout and stderr outputs of the
external executable should be captured and added to the calling program's log file.

Returned Value
If the selected program cannot be found or cannot be run (e.g. missing a DLL), the return code is platform-
specific. On Windows, _run returns a value of 111 to indicate that the task could not be found or executed.
If the program is run, the returned value is the exit code provided by the called program.

Description
The _run function is used to spawn other programs - both DocOrigin tasks and other executables. Your
application will wait until that task has completed before resuming. (See also _runNoWait.)

Note: While you can invoke DocOrigin Merge with the _run function, it is strongly recommended
that you use the _merge function. It has been specifically created to spawn DocOrigin Merge.
Similarly, you are strongly advised to use the _runScript function rather than using _run to
launch RunScript. By using those purpose-built functions, the called program gets the same jobID
as the calling program. Also, the log file is shared as well as any session file that is being used.
Hence information can be passed between the programs by using session settings.

Scripting | Script Functions

page 546

Examples

First Variation

 var program = $E + "/Merge";
 var arglist = "-form=$F/myform.xatw -data=$D/mydata.xml";
 var rc = _run(program, arglist);
 // Note: better to use var rc = _merge(arglist);
 if (rc != 0) _logPrintf("The _run return code was: %d\n", rc);

Second Variation

 var program = $E + "/Merge"; // or "$E/Merge";
 var args = {};
 args.form = $F + "/myform.xatw"; // or "$F/myform.xatw";
 args.data = $D + "/mydata.xml"; // or "$D/mydata.xml";
 var rc = _run(program, args);
 // Bote: better to use var rc = _merge(args);
 if (rc != 0) _logPrintf("The _run return code was: %d\n", rc);

Remember that $E is pre-populated to refer to the appropriate program folder (xxx/DO/Bin) for your
chosen installation folder. $F, and $D are presumed to be folder mapping variables that you defined in
your $O/Paths.prm override file to refer to appropriate folders. See $X String Substitutions. Also, the
example uses Merge, without the .exe to make this portable to *nix systems. Similarly, the example
uses /'s not \'s for portability reasons. Besides, backslashes would have to be doubled up when used in
JavaScript strings. Use forward slashes.

In the first variation, if the form name had a space in its name, e.g. Sample Invoice.xatw, then you would
have to quote it as in '-form="$F/Sample Invoice.xatw"' — it has to be double quotes, not single quotes,
and hence the overall quoting around the whole arglist, in JavaScript, would use single quotes.

In the second variation, it is safe to use $X path substitutions on all platforms. In the first variation, on
Linux systems, if you pass a $X it will be incorrectly interpreted as an environment variable reference.

Consider using _sprintf...

 var program = $E + "/Merge"; // or "$E/Merge";
 var args = {};
 args.form = $F + "/myform.xatw"; // or "$F/myform.xatw";
 args.data = $D + "/mydata.xml"; // or "$D/mydata.xml";
 var rc = _run(program, args);
 // Bote: better to use var rc = _merge(args);
 if (rc != 0) _logPrintf("The _run return code was: %d\n", rc);

Don't forget to put a slash / at the start of the base file name.

Do check your return codes.

Scripting | Script Functions

page 547

An Args Object or Array
It's often quite tedious to produce an arg list string. BTW, it is usually easier to use the _sprintf function
rather than endless string concatenations.

For running DocOrigin programs, ones that use the -option=value notation, it is preferred to use the
second variation above. The resulting code is much easier to understand and to maintain. But suppose a
command-line option can occur multiple times; what then?

Clearly, it is pointless to use:

 args.option = "ABC";
 args.option = "XYZ";

Naturally, the last value alone will win out.

A classic example of this need is for when you wish to give Merge two -filter options. The way to
accomplish that is by using numeric property "names" in your args variable. When building up the
command line from the supplied args variable, the code discards any numeric property name and uses just
the property value. Here is an example:

 var args = {};
 args.form = ...;
 args.data = ...;
 args[0] = "-filter filter1.wjs -symbolset cp1252";
 args[1] = "-filter filter2.wjs";
 var rc = _merge(args);
 if (rc != 0) _logPrintf("The _merge return code was: %d\n", rc);

Do note that in this format the value side of the assignment includes the option name. It is not necessary
to use the exact numbers: 0, 1, 2, ... You can use any numbers you like but do not use the same number
multiple times in one args definition, else the latter one will overwrite the former one.

Another method is to use a JavaScript array. Here is an example:

 var args = [];
 args.form = ...;
 args.data = ...;
 args[0] = "-filter filter1.wjs -symbolset cp1252";
 args.push("-filter filter2.wjs");
 var rc = _merge(args);
 if (rc != 0) _logPrintf("The _merge return code was: %d\n", rc);

Notice the use of [] which signifies an array, rather than {}, which signifies an object. JavaScript is very
flexible. You can use args["form"] = ... or args.form = ..., or args.push("-form ...");. All of those
syntaxes are supported and can be intermixed. The joy of using push() is that you don't have to dream up
unique array index numbers.

Scripting | Script Functions

page 548

Use a .prm file
Getting all the quoting of command line parts correct can be annoying. One way to make your life simpler
is to use a, possibly temporary, .prm file. Of course, this is for only DocOrigin programs. Other programs do
not know how to process .prm files. If you were to have or create a .prm file, named say, myParms.prm, you
could use _run as follows:

 var rc = _run("a DO program", "@myParms.prm");

The @ is OK, but not necessary if it is the first parameter and it ends in .prm.

This .prm method may be more comfortable for some users.

Redirecting Program Outputs
Many programs write output to stdout and possibly error messages to stderr. By using the logStdout
parameter, with a value of true, in your _run call, you can cause that stdout and stderr output to be
captured and automatically copied into the calling program's log file. This is very handy for keeping all
messages together in one log file. If you do capture that output into your log be aware that it won't also
come out to the console.

You may not want to capture that output in your log file but rather redirect that output to some file. The OS
standard way to do that is by using the > operator. This is OS standard practice. If you create a command
line (as opposed to an array of args) you can include the > operator (or other operators, e.g. >>, |) as you
see fit. _run will feed that to the OS and the OS will do what it normally does.

As of 3.2.001.05, if you want to use the mpre easily maintainable convenience of an args array you can do
the following:

 var args = [];
 args.push("parameter 1");
 args.push("parameter 2");
 args.push("parameter ...");
 args.push(">");
 args.push("myFile.txt");
 var rc = _run("myProgram", args);

The > operator must be provided as a separate array item. The operators that are supported using this
array syntax are: >, >>, 1>, 2>, 2>&1, |, and <. Indeed the OS supports more, less common, operators.
If you have the need to use one of the less common operators, then you must use the command-line
method of the _run options, and not the args array/object option.

Debugging
It is hugely beneficial, during development, to log out the command line. Doing a

_logf("args: '%s'\n", args);

Scripting | Script Functions

page 549

is a great way to do that. The DocOrigin JavaScript extensions support displaying JavaScript objects as %s.
Also try %S.

See Also

_merge _runScript _runNoWait Session

Scripting | Script Functions

page 550

_runNoWait
(As of 3.2.001.02)

Execute another program and do not wait for the result. Runs the specified program, passing the argument
list as command line parameters.

Syntax
_runNoWait(program [, args])

Parameters
program is the fully qualified program name. (fully is preferred but sufficiently will do.)

args can be a text string that is the full command line or args can be a JavaScript object or array whose
properties define the argument list. If args is a text string, the string will simply be passed as-is to the called
program.

If args is a JavaScript object, each object property name becomes a DocOrigin-style -name command line
option name and the property's value becomes its value. E.g.

 args.form = "$F/myForm.xatw";

For third-party applications that don't use the -name value syntax, use a numeric property name, e.g.

args[0] = "3rd party command line part";

Returned Value
Returns zero on success.

Description
It differs from _run in that we do not wait for any result to come back. Fire and forget.

See Also

_run

Scripting | Script Functions

page 551

_runScript
(As of 3.0.003.19)

Call DocOrigin RunScript. Runs RunScript, passing the argument list as command line parameters.

Syntax
_runScript(args)

Parameters
args is either a string listing all the RunScript command-line parameters or a JavaScript object whose
properties define the command-line parameters. If args is a string, the string will be passed as-is to the
RunScript program.

If args is a JavaScript object, each object property name is converted to a DocOrigin-style -name parameter
and the property's value becomes the parameter's value. The property names mirror the command-line
option names.

Returned Value
The return value from RunScript. RunScript will return zero (0) if it runs successfully. If RunScript cannot be
found or cannot be run the return code is 111.

Description
Your application will wait until RunScript has been completed before resuming. There are a couple of
bonuses in choosing to use _runScript instead of supplying the necessary parameters to -run. First is that
you don't have to work out where the RunScript executable is. The second is that the -logfile
specification that was provided to the app that is running your script will automatically be passed along to
the RunScript app instance that you are launching. Of course, if you specify the -logfile option explicitly,
your option will be the one in effect.

See _merge for more details and examples.

Do check your return codes.

See Also

_run _merge

Scripting | Script Functions

page 552

_sendmail
Send an email.

Syntax
_sendmail(args)

Parameters
args is a JavaScript object with specific property values for each argument to _sendmail.

Returned Value
0 (zero) if successful. Otherwise an error code. Note that if messages are queued and not sent immediately,
the return code only reflects the success of adding the message to the send queue - not its success or
failure to get sent. That information will then be available in the logfile for the DocOriginSendMailServer
task. If the message is sent immediately, the return code may reflect the actual status feedback from the
email server.

The cURL program has an impressive set of capabilities and options and a long list of return codes. You can
view this at cURL man page.

Description

All parameters to _sendmail are defined as properties of a JavaScript object. For example:

var args = {};

args.To = "support@docorigin.com";
args.Subject = "Testing of DocOrigin sendmail command";
args.attach = "mytestfile.txt";
args.text = "This is my test message\nIt has two lines.";

rc = _sendmail(args);
if (rc != 0) _message("sendmail error - rc=%d", rc);

A "classic" is: args.attach = _printer.getOutputFile("PDF");

Most email parameters can also be defaulted in the DocOriginSendMailServer.prm file. The parameters
marked as [mandatory] must be set either explicitly in the args definition or have a default value set in the
DocOriginSendMailServer.prm file.

ALERT: Don't let your message get trapped by a Spam Filter

The construction of your email message and the wording you use will affect how likely it is that a
customer's spam filter may flag your email as spam. There are a number of websites with
suggestions and tips on how to avoid this. Try a search for "how to avoid spam filters".

https://curl.se/docs/manpage.html

Scripting | Script Functions

page 553

•

•

•

•

•

•

•

•

•

•

The available parameters (args) are:

args.attach - a list of one or more file names separated by semicolons.

These files are attached to the email. _printer.getOutputFile("PDF") is commonly used to refer to
the output just produced.

args.bcc - set a BCC (blind CC) address.

This is a string containing one or more valid email addresses separated by semicolons.

args.cc - set a CC address.

This is a string containing one or more valid email addresses separated by semicolons.

args.checkaddress - validate all email addresses before sending.

This setting is typically set in the DocOriginSendMailServer.prm file.

args.cidfolder - a file folder on your computer where embedded html images are located.

See HTML Image Embedding below for details. Defaults to the folder containing the html text.

args.from - set the sender's return address. [mandatory]

This address must be present either in the args list or as a default setting in the
DocOriginSendMailServer.prm file. Using Microsoft Exchange? See the note in Sending Mail.

args.header - add an optional email header record to the email.

Available as of version 3.1.002.06. This option can also be set in the DocOriginSendMailServer.prm
file. Set this to a null string to override a -header setting in the DocOriginSendMailServer.prm file. If
more than one header is required, separate the headers with "\r\n". This feature is useful if you
require additional X-type headers in your emails.

args.hold - prevents emails from actually being sent.

If set to true, this parameter prevents the actual transmission of the emails. This option can also be
set in the DocOriginSendMailServer.prm file to prevent any transmission of emails while testing the
system. Messages that are queued will be placed in the queue but not sent. Note that if the -hold is
then removed any queued messages will get sent.

args.keep - Determines whether to save the email that has been sent or to discard it.

If set to true, sent email is stored in -mailSentFolder. This setting is typically set in the
DocOriginSendMailServer.prm file.

args.html - provide the message text as html-formatted text.

This allows font typeface, size, bolding etc. as well as other html-style formatting. If the first character
of the html string is an @ the string is assumed to be a filename. The contents of the file is read and
used as the html message body.

If both args.html and args.text are provided then the email message is sent with a mimetype of
multipart/alternative which allows mail clients that don't support html mail to fallback to displaying
the text email only.

Scripting | Script Functions

page 554

•
•

•

•

•

args.subject - the subject line of the message.
args.testMail [As of version 3.1.002.07] - causes all email addresses within the email (To, Cc, Bcc) to be replaced
with this supplied email address.

This is a quick way to test an email call and avoid sending emails to their intended recipients. This
setting is also available on the program command line or the DocOriginSendMailServer.prm file.

args.text - provide the message text as plain text.

If the first character of the text string is an @ the string is assumed to be a filename. The contents of
the file is read and used as the text message body.

If both args.html and args.text are provided then the email message is sent with a mimetype of
multipart/alternative which allows mail clients that don't support html mail to fallback to displaying
the text email only.

args.to - set the To address. [mandatory]

This is a string containing one or more valid email addresses separated by semicolons.

args.queue - queue this message to be sent by DocOriginSendMailServer rather than immediately.

HTML Image Embedding
When you have specified an HTML message, Sendmail does some additional processing to attempt to
nicely embed images into the HTML message body.

Normally

works as expected - fetching the image from your server and displaying it. However, if you encode this as

the file yourimage.jpg from your computer will be embedded into the email as a special attachment and
referenced from there. The image is embedded into your HTML message without needing to reference any
server. This can be useful for email viewers that might otherwise either inhibit image display or prompt the
customer to turn on their display.

The string src="cid: must be exactly like that - same case, quotes, etc. for this to work. If the args.html
parameter references a file such as in

args.html = "@C:/DocOrigin/User/myhtmlfile.txt";

the cid image file is assumed to be in the same folder as the html. Otherwise, you can explicitly specify the
location of the image file using the cidfolder option of _sendmail() or by setting the command line
-cidfolder option.

Scripting | Script Functions

page 555

See Also

_run _merge

ALERT: Interplay with -PDFCombineDocuments setting

The default setting of CombineDocuments is Yes for the PDF driver. That means that Merge keeps
the output PDF file open for the entire duration of the job. You won't be able to send that
combined document until End-Of-Job.
If you wish to send individual document emails at End-Of-Document then ensure that you set:

-PDFCombineDocuments No

Scripting | Script Functions

page 556

•
•

•

_session - Accessing Session Data
(As of 3.1.002.10)

DocOrigin maintains an internal mechanism for passing information between various DocOrigin programs
that are being spawned internally or explicitly using the DocOrigin scripting functions. This mechanism is
called Session. See the Session page for a general overview.

Functions
_session.set(name, value) - set Session variable name to a value.
_session.get(name[, raw]) - fetch the value of Session variable name. If raw (defaults to true) is false we try
to convert some values to numbers and booleans.
_session.clear() - clears all Session data.

As of version 3.2.001.01, you can access a value in a Session variable directly as in:

 _session.foo = "some value";
 var foo = _session.foo;

Note, _session variables are always stored as strings (see _session.get(xxx, false) special case
above).

Examples...

 _logf("session = %S", _session.object());

Might return this in the logfile

 session =
{
 "_LastApp":"Merge",
 "_LastUpdated":"2020/01/30 12:10:41",
 "$OUTPUT":"c:\\temp\\AtwTempFiles\\AutoFieldTest_6.pdf",
 "abc":"ABC",
 "count":3
}

Other examples...

 var o = _session.object();
for (var name in o) _logf("Session[%s] = '%s'\n", name, o[name]);

var lastApp = o._LastApp;

See Also

Session Overview

Scripting | Script Functions

page 557

_sprintf
(as of 3.0.004.05)

Format and return string.

Syntax
_sprintf(format [, p1 [, p2...]])

Parameters
format is a template of the text to be returned It is similar to a C sprintf format string where embedded
%s, %d, and %f markers that get replaced by parameters passed to _sprintf.

 p1, p2... are the optional parameters to be substituted into the format string.

Returned Value
The formatted string.

Description
See the _printf command for formatting options. This function is identical to the _printf() function except
that the resulting string is returned instead of printed.

Example

 str = _sprintf("name=%s, city=%s", "Tony", "Paris");
 // sets str to 'name=Tony, city=Paris'

See Also

fp.fprintf _logf _message _printf _tracef

Scripting | Script Functions

page 558

_summary
(Merge only)

Create data for Summary document

_summary is a pre-defined JavaScript Object that can be used to create a data file that is to be merged with
your "Summary Section" panes.

Panes are designated as Summary Section panes in Design, on the property sheets for Panes.

_summary is a pre-defined JavaScript Object that can be used to create a data file that is to be merged with
your "Summary Section" panes.

Panes are designated as Summary Section panes in Design, on the property sheets for Panes.

The _summary object is in fact an instance of the XmlFile Class. See the XmlFile Class for the description of
the functions that are available for use. The physical XML file that backs the _summary object is a
temporary file that is created automatically when Merge first starts up. As with all temporary files it is
deleted when the Merge run is complete. During the processing of the form and data you can use the
 _summary object's methods to emit data into that temporary file.

It's likely that you will have been putting data into the file using _summary all through the processing, often
in End-of-Document event scripts. You have one final chance to add data to the file, once all documents
have been processed when the Start-of-Summary event script(s) are run. Once that event cycle is over,
Merge will combine the summary data with the form, using only those Panes from the form where the Job
Section has been designated as "Summary".

The Summary Section output is a new document separate from all the Main Section documents. It will
always begin on a new page.

See Also

XmlFile Class

Scripting | Script Functions

page 559

•
•
•
•

•

•

•
•

•

_system
(Merge only)

_system is a javascript Object which has a number of methods (functions) and properties related to the
active Merge run. These include access to current data, form, script file names as well as active page and
document counts.

Functions and Properties
_system._dataFile - the path and filename of the data file being processed.
_system._event - the name of the script event currently being executed.
_system._formFile - - the path and filename of the form template being processed.
_system._ndocuments - total number of documents processed so far.

Note that this value may be different from _printer.prt.ndocuments which counts only those
documents printed to the specified printer.

_system._nPages - total number of pages in the current document processed so far.

This counts visible, numbered, pages only.

_system._nTotalPages - total number of pages (all documents) processed so far.

This counts visible, numbered, pages only.

Note that this object is different from _printer.prt.ntotalpages which counts only those pages printed
to the specified printer.

_system._scriptFile - the path and filename of the script file being processed. (or null)
_system.docPageCount([bIncludeNumberedPages], [bIncludeUnnumberedPages]) - pages in the current
document

By default, bIncludeNumberedPages is true, and bIncludeUnnumberedPages is false.

Typically, the unnumbered pages are for preamble material, separator pages, or terms and conditions
pages.

The numbered pages are typically the 'meat' of the document.

By default, you get back the count of the numbered pages only.

Note: The final two optional parameters were added in 3.0.002.06

_system.rename(from, to, [charReplacement]) - rename a data XML tag name.

This function may be used at the Start of Job script event to rename data tags to match the form
template.

from is the name as it appears in the data file. This string is case-insensitive.

to is the name in use within the form. This string is case-sensitive and will be used exactly as passed to
the method. All occurrences of from are changed, no matter at what level within the data file. To have

Scripting | Script Functions

page 560

•

•

an effect, this method must be called prior to any data being loaded, that is in the Start of Job event
script. All subsequent references to the object must use the new to name.

The optional third parameter, charReplacement can be used to indicate character replacement. In
that case, each instance of any character in the "from" string will be replaced by the "to" string.

Examples:

_system.rename("JF01", "InvoiceDate");

Will rename any item in the data file named "JF01" to "InvoiceDate".

system.rename("-.", "", true);

Will replace all dashes and dots with underscores in any data name.

Note: The optional third parameter was added in 3.1.001.21

_system.setDecimal(char) - Set the character to be interpreted as the decimal point.

Note that this is not part of the _locale number formatting but is used when internally converting data
strings to numbers. Locale is for output, this is for interpreting input. It needs to be set very early on,
most appropriately in the form object's Start-of-Job event. e.g. _system.setDecimal(",");

_system.totalPageCount([bIncludeNumberedPages], [bIncludeUnnumberedPages]) - pages in the Merge
run as a whole

See _system.docPageCount() above, re parameter settings.

Scripting | Script Functions

page 561

_toBase64
(As of 3.1.002.10)

Convert a string to Base64 encoding.

Syntax
_toBase64(string [,bytesperchar])

Parameters
string is the string to be converted. It must contain 8bit characters only (unicode 0-255);

bytesperchar is the coding size of each character in the string parameter. The default is 1 - indicating that
each string character is to be treated as a single 8bit value when it is converted. This will be mean that no
character in the string is expected to have a unicode character code greater than 255.

To convert the full unicode character set, set bytesperchar to 2.

Returned Value
Returns the resulting base64-encoded string.

Example

 var str = "DocOrigin 2020";
 var b64 = _toBase64(str); // "RG9jT3JpZ2luIDIwMjA="
 var txt = _fromBase64(b64); // "DocOrigin 2020"

 var str2 = "保险单号";
 var b64 = _toBase64(str2, 2); // "T92WaVNVU/c="
 var txt = _fromBase64(b64, 2); // "保险单号"

Note that as an alternative to encoding 2-byte unicode directly into base64, you could also convert the
unicode string to utf8 first. utf8 is a more compact representation where character codes below 128 (the
ascii set) are represented by simple single-byte characters, while others are encoded as 2 or 3 byte
sequences.

The choice is dependent on your intended usage of the base64 encoded string.

 var str = "DocOrigin fête 2020";
 var utf8 = unescape(encodeURIComponent(str)); // "DocOrigin fÃªte 2020"
 var b64 = _toBase64(str); // "RG9jT3JpZ2luIGbDqnRlIDIwMjA="
 var u = _fromBase64(b64); // "DocOrigin fÃªte 2020"
 var txt = decodeURIComponent(escape(u)); // back to "DocOrigin fête 2020"

See Also

Scripting | Script Functions

page 562

_fromBase64 _file.toBase64 _file.fromBase64

https://docs-admin.docorigin.com/display/RM/_file+Functions#:~:text=_file.toBase64(fileName)
https://docs-admin.docorigin.com/display/RM/_file+Functions#:~:text=_file.fromBase64(,Introduced%20in%203.2.001.01).

Scripting | Script Functions

page 563

_toDOUnits
This method converts common units of measure (inches, centimeters) to internal DocOrigin units of
measure.

Syntax
_toDOUnits(string)

Parameters
string is a string value to be converted.

Returned Value
Returns an integer number of internal units (microns).

Description
This routine converts a number such as "1.25in" into internal DocOrigin coordinates (microns). See the
Script Units section for a list of units of measure that may be specified. Invalid strings return a value of 0.

See Also

_fromDOUnits Script Units

Scripting | Script Functions

page 564

_toXmlString
(As of 3.2.001.06)

Convert a string to XML encoding.

Syntax
_toXmlString(string)

Parameters
string is the string to be converted.

Standard set of XML symbols that has to be escaped are handled - <>'"&.

Returned Value
Returns the resulting XML-encoded string.

Example
 _toXmlString("<>'\"&"); // " <>'"&"

See Also

_fromXmlString

Scripting | Script Functions

page 565

_tracef
Format and write a line of text and write to the trace file.

Syntax
_tracef(format [, p1 [, p2...]])

Parameters
format is a template of the text to be written to the file. It is similar to a C format string where embedded
 %s, %d, and %f markers that get replaced by parameters passed to _tracef. For a more complete
description of the formatting, process see _printf.

p1, p2, ... are the optional parameters to be substituted into the format string.

Returned Value
None.

Description
The trace file must be enabled by specifying the –trace command line option. If script tracing is not
enabled _tracef statements are ignored.

Example

 _tracef("name=%s, city=%s", "Tony", "Paris"); // prints 'name=Tony, city=Paris'

See Also

fp.fprintf _logf _message _printf _sprintf

Scripting | Script Functions

page 566

_xml
(Merge only)

Convert -filter data to XML.

_xml is a pre-defined JavaScript Object that can be used to convert non-XML data to XML format within
Merge.

This feature is available only when using a JavaScript script Filter to process non-XML data within Merge -
see the JavaScript Filters section for details. Writing data using the _xml object creates a temporary XML file
that Merge will subsequently use as the "real" data file to merge with a document template. See the XmlFile
Class description of the functions that are available.

Example

_xml.tag("Header");
_xml.Name = "Wayne Hall";
_xml.Phone = "613-555-1515";
_xml.Address = {Addr1:"2525 Circle Crescent",
 Addr2:"Ottawa",
 Addr3:"Canada"};
_xml.endTag();

Will create the following xml:

<Header>
 <Name>Wayne Hall</Name>
 <Phone>613-555-1515</Phone>
 <Address>
 <Addr1>2525 Circle Crescent</Addr1>
 <Addr2>Ottawa</Addr2>
 <Addr3>Canada</Addr3>
 </Address>
</Header>

See Also

XmlFile Class

Scripting | Script Functions

page 567

•
•

•

•

•

•

XmlFile Class
Write XML files

XmlFile is a JavaScript class that can be used to open and write XML data to any file. (As of 3.1.001.01, see
XmlInput for the DocOrigin script function for reading XML files.)

You can create an XmlFile object as follows:

 var oXml = new XmlFile(sFilePath[, bSuppressDefaultXmlTags[, bOpenNow]]);

where

sFilePath - string representing the output file path (mandatory)
bSuppressDefaultXmlTags - boolean which defines whether to suppress the <XMLData> and <Document> tags
(optional, default is false, added in 3.1.002.02)
bOpenNow - boolean which defines whether to immediately open or create the output file, versus delay until
some tag or data output call is made (optional, default is false, added in 3.1.002.02)

This will create the oXml object with the specified file as an xml output file. Subsequent function calls or
property assignments can be used to specify the xml tags and data to store in the output file. When you
are finished you should close the file using the oXml.close() function. When the file is closed, all
outstanding closing xml tags are automatically added to complete the file.

The XmlFile functions ensure that you create properly structured xml. It tracks open sub-structures and
ensures the closing </end> tags are inserted as required.

Functions
In the following table, oXml is used as an example of an XmlFile object name, but you can use any name. It
would be created with:

 var oXml = new XmlFile ("somefile.xml", bSuppressDefaultXmlTags, bOpenNow);

After creating the object you may use any of the following functions:

oXml.close() - close the file.

If bOpenNow is false and no output has been written, the output file is not created. All required
ending tags are automatically added. Once the file is closed, it is available for opening by any other
application.

oXml.getFileName() - return the name of the XML file.

This returns the name of the file that this object opened. This can be useful when the XmlFile Class has
been created by another process - such as when a Merge filter script is given the _xml object. In the
example above it would return somefile.xml.

oXml.newDocument() - begin a new document.

Scripting | Script Functions

page 568

•

•
•

•
•

This closes off any previous non-empty document with a </Document> close-tag; and then starts a
new document with the <Document> open-tag. If bSuppressDefaultXmlTags is true or if there is a
still-empty document already open, this function does nothing.

oXml.pi(string) - insert an XML Processing Instruction.

This will insert an xml processing instruction <? string ?> into the output file.

oXml.comment(string) - add string as an XML comment. <!-- string -->
oXml.tag(tagname[, attrs]) - begin a new XML group (attrs were introduced in 3.1.002.10).

A new XML group <tagname> is added to the output file as the start tag of the enclosing element for
all the subsequent data up to the next oXml.endTag() call. For every oXml.tag() call there must be a
matching oXml.endTag() call. attrs is optional; it is either a "formatted attributes string", e.g.
'attr1="value1" attr2="value2"' or an object {attr1:"value1", attr2:"value2", ...}.

oXml.endTag() - end the current XML group.
oXml.set(tag, value[, attrs]) - add <tag>value</tag> to the output (attrs were introduced in 3.1.002.10).

Writing Data
You can assign data values or structures to any named property of the oXml object. This will cause the
data to be inserted inside appropriate XML tags. As an example:

 oXml.mydata = "This is my data";
 oXml.another = "more stuff";

Results in XML output of:

 <mydata>This is my data</mydata>
 <another>more stuff</another>

Example
You may also assign entire JavaScript object structures to the oXml object as in:

oXml.mydata = { __attrs__: { comment: "This is the mydata tag" },
 Detail: { __attrs__: {comment: "This is the Detail tag"},
 Name:'Bert',
 Addr:'123 Sesame Street'
 }
};
Results in XML output of:

Results in XML output of:

As of 3.1.002.10, there is a special __attrs__ property available for assigning XML attributes via
JavaScript objects. See an example below.

Scripting | Script Functions

page 569

<mydata comment="This is the mydata tag">
 <Detail comment="This is the Detail tag">
 <Name>Bert</Name>
 <Addr>123 Sesame Street</Addr>
 </Detail>
</mydata>

These structures can be nested to any depth.

var myfile = new XmlFile("myfile.xml");
myfile.tag("Header");
myfile.comment = "This is my address info.";
myfile.Name = "Bert";
myfile.Phone = "555-555-5555";
myfile.Address = {Addr1:"123 Sesame Street",
 Addr2:"New York",
 Addr3:"USA"};
myfile.endTag();
myfile.close();

Will create the following xml:

<?xml version="1.0" encoding="UTF-8"?>
<XMLData>
 <Document>
 <Header>
 <comment>This is my address info.</comment>
 <Name>Bert</Name>
 <Phone>555-555-5555</Phone>
 <Address>
 <Addr1>123 Sesame Street</Addr1>
 <Addr2>New York</Addr2>
 <Addr3>USA</Addr3>
 </Address>
 </Header>
 </Document>
</XMLData>

The oXml.tag = {tag1:"value1", tag2:"value2", … tagn:"valuen"}; usage is very powerful. The within-
curly-braces syntax is really defining a JavaScript object. Of course, if you happen to have a JavaScript object
already available, constructed through whatever prior processing, you can output the elements of that
object to XML simply by saying: oXml.tag = objectName; The elements of the object will be iterated over
and an XML element will be emitted for each. The group of elements will be encased in the usual way with
the specified <tag> bookends.

This is quite powerful when constructing XML data files based on your own application's objects.

Scripting | Script Functions

page 570

_xml
When processing DocOrigin Merge filter scripts a special instance of the XmlFile object is automatically
created. It is called _xml and is pre-programmed to output to the temporary file Merge will use as the
filtered output data stream. All of the above methods will work with the object named _xml.

_summary
Merge also provides a second XmlFile object named _summary. It can be used to create data for a Merge
Summary document.

See Also

_summary _xml

Scripting | Script Functions

page 571

XmlInput Class
(As of 3.1.001.01)

Read XML files.

XmlInput is a JavaScript class that can be used to open and read any XML file.

Is meant for simple scripting use, not for creating tree structures that have to be recursed to dig out what
is in them. Definitely KISS.

Synopsis

Function Purpose

oXI=XmlInput(fileName) Create an XmlInput object

o=oXI.next() Get the next element from the XML file

o=oXI.next(tag) Get the next element with the provided tag name

o=oXI.next([tag1, tag2, ...]) Get the next element with one of the provided tag names

o=oXI.get() Get the next leaf data tag

o=oXI.get(tag) Get the next leaf tag with the provided tag name

o=oXI.get([tag1, tag2, ...]) Get the next end tag with one of the provided tag names

o=oXI.close() Close the file, free resources

Create an XmlInput Object
You create an XmlInput object via:

var oXI = XmlInput(an xml file name);

If the xml file does not exist then a JS exception will be thrown (You should check for that with a try-catch
block). Otherwise, it will be a fine JavaScipt object.

The bookend to this is: oXI.close();

The variable names oXI and o are just examples. Use what you like. Though I kind of like oXI. Oh,
multiple XmlInput objects can be alive, well, and independently active, at the same time.

Scripting | Script Functions

page 572

One Element at a Time
The simplest thing to do is to read the XML file sequentially and see what you get back. You can read the
next element of the file with:

var o = oXI.next();

oXI.next() returns another JavaScript object with lots of useful properties. Which properties it has is
dependent on what the next element of the XML file was. That could be a "Start Tag", an "End Tag", a piece
of data, a comment, or a Processing Instruction (PI). If it comes back with null that means that you have
hit end-of-file.

The following is a really simple script that I urge you to use to understand what you get by using
oXI.next().

try {
 var oXI = XmlInput("C:/temp/simple.xml");
 while (true) {
 var o = oXI.next();
 if (o == null) break;
 _printf("\n");
 for (var x in o)
 _printf("o has '%s' as '%s'\n", x, o[x]);
 }
 oXI.close();
} catch (e) {
 _printf("caught error '%s'\n", e);
 return 201;
}

The o object that is returned has some subset (as applicable) of the following properties:

Property Meaning

type The kind of element that was returned (see below for details)

line The line number of the XML file that has this element

column The column in that line where the element ends

som The dotted schema object model notation for the returned element

You might say, "Gee, what is this doing for me? Just simple sequential access, what good is that?". If
you have ever tried to parse out an XML file in script you will (or should) appreciate how much nit-
picky code is required to properly parse an XML file in all its many permitted syntax variations. The
underlying C++ code uses the Xerces library to do that gnarly parsing. Because of that you don't
even have to think about it. Just accept the elements that come through to you without any fuss
required. < > & etc. even CDATA -- all handled for free.

Scripting | Script Functions

page 573

Property Meaning

startTag For start (aka open) tags, the tag name. <tag>

endTag For end (aka close) tags, the tag name </tag>

leafData For a leaf node (a node with no children) the data it contains

attr For start tags that have attributes, this is an object that contains all the attributes and
their values

comment The full comment text between <!-- and -->

piName The 'target' of a Processing Instruction. E.g. in <?DocOrigin ... ?> it would be DocOrigin

piValue The full text after the target name in a Processing Instruction

type, line, column, and som are always present. The others are present only when applicable.

The following types can occur:

Type Meaning

1 This is a start tag; may include an 'attr' object property

2 This is leaf data

4 This is an end tag

8 This is a Processing Instruction -- includes both piName, and piValue

16 This is a comment

6 That is, 4 + 2, an end tag and the relevant leaf data

7 That is, 4 + 2 + 1, a start tag, end tag, and leaf data. For <tag/> scenarios

Note that 2 will never occur on its own.

You may or may not use that type property. Instead, you might use:

if (typeof o.leafData != "undefined") {
 // Yay, I have real data for tag o.endTag
 ...
}

Scripting | Script Functions

page 574

It's pretty easy, and simple, to race through the XML file, picking off items of interest. If you choose to act
on that data immediately or choose to store away the data in arrays, or objects of your own design, for
later reference, well, that is up to you. You are in control.

Just the Leaf Nodes
It could be that you are not needful of all the structural tags, but rather just want to get to the "meat" --
those tags with data in them, i.e. leaf tags. You can skip over all the other stuff and get only the data
elements by using (in a loop):

o = oXI.get();

Remember that not only do you get the start tag, end tag and data, you also get the full SOM expression.
You do know what structure surrounds this data if it is of interest to you. You don't need to worry about
 typeof .. != "undefined" because startTag, leafData, and endTag will always be defined after an
oXI.get().

Now you can really fly through that XML file.

Just that Tag
It's quite probable that you know the structure of the XML file that you are reading. Perhaps you simply
want to get the runDate control element. You can do that by using:

o = oXI.get("runDate");

(or whatever leaf tag name interests you). So that's very easy; direct to what you want to know. Note that
we only ever use leaf tag names, not dotted SOM expressions. The full dotted SOM expression is provided
back to you, but must not be provided to the oXI.get() function. If you misspell the tag name, chances are
that it will race along all the way to end-of-file and you will get null back.

Get 'One of These' Tags
Maybe you are not absolutely certain of the tag order or simply don't want to bother to do that research.
You can specify an array of tag names to oXi.get() and it will return with whichever one it finds first. It
does not return an array of objects but rather returns the first one that it finds that matches your list.

Imagine an XML file that contains a snippet like this:

<Detail>
 <Item>23</Item>
 <Desc>A fine item, you just have to have</Desc>
 <Price>19.99</Price>
 <Qty>4</Qty>
</Detail>

CAUTION: The reading of the XML file proceeds in only one direction: forward. If you wish to access
several specific tags, do so in the order in which they appear in the file.

Scripting | Script Functions

page 575

You might choose to use:

o = oXI.get(["Item", "Qty", "Price", "Desc", "Detail"]);

It will return with whichever one it finds first (next?). Strangely, I added the "Detail" tag name to my list. It's
not even a leaf tag! Why did I do that? Well, I didn't want to run off into the next Detail structure so I put a
backstop on my get request. In my script, I would check to see if the end tag "Detail" was returned. If it
was, I would know that I had exhausted that Detail structure. Because of that desire, this form of the
 oXI.get() function returns both leaf nodes and end tags (assuming they are in your interest list).

// Process a Detail structure
var tagsOfInterest = ["Item", "Qty", "Price", "Desc", "Detail"];
var detail = {}; // My detail object
while (true) {
 o = oXI.get(tagsOfInterest);
 if (o == null) break; // Ouch! missing </Detail>!!
 if (o.endTag == "Detail") break; // Finished this Detail structure
 detail[o.endTag] = o.leafData;
}
// Great my detail object is all filled out with .Item, .Qty, .Price, and .Desc

Zip to the Details Section
Reminder, you can just read the whole file sequentially. That is so easy.

Perhaps you want to quickly skip over a bunch of header matter and get to the Details section. In that
case, you are after a start tag of Details. You can do that with:

o = oXI.next("Details");

oXI.next() has the same variations as oXI.get(). That is, you might not supply a parameter and it would
return the next tag that it finds. Or you might supply an array of tags that interest you and it will return the
next one of those that it finds.

In practice, you would probably use the variations of oXI.next() augmented by only the no-arguments
version of oXI.get(). The latter to race through leaf data nodes, and the former to zip along to any named
tag. oXI.get(parms) provides no advantages over oXI.next(parms).

Attributes
Some people insist on putting attributes in their XML files. If they do, you will get (no choice in the matter)
an attr property on the start tag element which has those attributes. Let's consider an example where your
XML has the following:

<foo bar="high" length="long"> ...

When your use of oXI returns that start tag element it will have an o.attr property. In this example you
could reference:

o.attr.bar and o.attr.length.

Scripting | Script Functions

page 576

Or in the unlikely case of your not knowing what attributes to expect, you could use the usual:

for (var prop in o.attr) {
 // do something with prop and o.attr[prop]
}

Where Am I?
It's possible that you discover a data value that seems in error. You may wish to log a message about that.
It's helpful to report the file name and the location of where you detected the issue. To that end you always
have available:

o.line and o.column.

You can also use oXI.getFileName() just in case you forgot which file you opened.

Repositioning

While blocking your mind of any thought of performance you can always call:

o = oXI.reposition(line, column)

If you leave column out it is deemed to be 0. If you leave both line and column out they are both
deemed 0, and you effectively are asking to "rewind".

If necessary (and it likely will be) the XML parsing operation will start back at the beginning of the file and
race along, behind the scenes, until it gets a line and column that is equal to, or the first one greater than,
the values that you supplied. It returns the element at that position. Subsequent oXI calls will carry on from
there. It may be that you remembered some previously returned line and column values and want to
return to the scene of the crime.

Document at a Time Access
For programmers and academics, there is a natural desire to skip all this sequential stuff and load a DOM
(document object model). Then allow you to (saddle you with) traversing a tree recursively to dig out
information of interest. Well, hey, if you wish to create such constructs, go for it. Now that all the gnarly
syntactical parsing (which is not very rewarding to the soul) is taken care of, bless you Xerces, you can
easily create the ivory tower constructs of your dreams. I have a hunch that you will be more efficient in
your forms development using the, essentially sequential, access methods supplied above. And I feel
certain that you will have a far greater handle on what you code. (BTW: Do employ functions.)

We could still add document-at-a-time access someday should feedback rooted in practicality be provided
that leads that way.

This doesn't really fall into the category of KISS (Keep it Simple Sweetheart). But ... what the hey!

Scripting | Script Functions

page 577

•

•
•
•

•
•
•
•
•

XMLHttpRequest - send/receive html pages
(Windows only)

This class allows the use of the standard XMLHttpRequest functions that allow the posting and receiving of
HTML pages.

Usage
To use the XMLHttpRequest class you must first create an instance of the class:

var http = new XMLHttpRequest;

You can now use the http object to invoke the various functions below.

Functions
http.readyState - Represents the state of the request. Essential for async calls. Get data when it is
"4" (COMPLETED). As of 3.2.001.03.
Values:

0 (UNINITIALIZED): The object has been created, but not initialized (the open method has not been
called).

1 (LOADING): The object has been created, but the send method has not been called.

2 (LOADED): The send method has been called, but the status and headers are not yet available.

3 (INTERACTIVE): Some data has been received. Calling the responseBody and responseText
properties at this state to obtain partial results will return an error because status and response
headers are not fully available.

4 (COMPLETED): All the data has been received, and the complete data is available in the
responseBody and responseText properties.

http.status - Represents the HTTP status code returned by a request. As of 3.2.001.03.
http.statusText - Represents the HTTP response line status. As of 3.2.001.03.
http.getAllResponseHeaders() - get all response header name/value pairs.
This routine returns all name/value pairs in a single string. Each pair is delimited by a carriage return/linefeed
(CR/LF) sequence.
http.getResponseHeader(name) - get a single named response header value.
http.open() - open a link to an http web site.
http.send() - send the request and receive a response.
http.setRequestHeader() - add a custom http header.
http.responseText - get the textual response made by the invoked URL

See the example under http.responseText.

Scripting | Script Functions

page 578

http.open - define a link to an http site
Define a link to an http site.

Syntax
http.open(method, url [, async [, user [, password]]])

Parameters
http - is the variable name used in a prior call to new XMLHttpRequest;

method - "GET" or "POST" (not case sensitive). The mode of communication to the web page.

url - the url to the web page to be communicated with.

async - true for asynchronous behaviour, false otherwise. For a GET operation, you want it to be false.

user - if website requires authentication then user and password should be provided.

password

Returned Value
Zero if successful.

Description
This routine opens a link to a web page.

See Also

 XMLHttpRequest

Scripting | Script Functions

page 579

http.send - send to server, get response
Send to server, get response

Syntax
http.send(data)

Parameters
http - is the variable name used in a prior call to new XMLHttpRequest;

data - any text data to be sent to the web url.

Returned Value
zero if successful.

Description
Send to server, get response

Example

COMING SOON

Scripting | Script Functions

page 580

http.setRequestHeader - define a custom request header

Syntax
http.setRequestHeader(header, value)

Parameters
http - is the variable name used in a prior call to new XMLHttpRequest;

header - string containing name of the header to set.

value - string value to set the header.

Returned Value
Zero if successful.

Description
Define a custom request header.

Example

 var http = new XMLHttpRequest;
 http.open("POST", "http://www.docorigin.com/echo.php");
 http.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
 var sData = "first=one&second=two";
 http.send(sData);

 var sResult = http.responseText; // what was sent back
 _message("result='%s'", sResult);

See Also

XMLHttpRequest

Scripting | Script Functions

page 581

http.responseText - get response
Get response

Syntax
http.responseText

Parameters
http - is the variable name used in a prior call to new XMLHttpRequest;

Returned Value
The text that was returned from the http request. E.g. an HTML or XML file or just echoed output.

Description
After having created an XMLHttpRequest object, opened an url, and issued that request (via send), you can
get the response by examining the responseText property of the XMLHttpRequest object.

Example
Note that the async parameter of open is false since I want synchronous behavior. I want the get to have
been done before I check responseText.

var http = new XMLHttpRequest;
http.open("GET", "http://www.docorigin.com/MyIp.php", false);
http.send(null);

var sResult = http.responseText; // what was sent back
_message("result='%s'", sResult);

Results in: whatever the invoked, in this case PHP, responded with.
In the MyIp.php example case that is something like: Your IP is: nn.nnn.n.nn

See Also

XMLHttpRequest

Scripting | DOM Functions

page 582

DOM Functions
(Merge only)

When scripting inside a form one has available the _document DOM, and some other DOMs. For the most
part, you will want to access properties (see DOM Properties Accessing the Document Structures of the
various objects in the DOM. In fact, navigation between objects in the DOM, is done via properties (e.g.
 _firstChild, _nextNode).

Those navigation properties yield a DOM Object. Actually one of the most common DOM Objects is the
this object, which is the object to which your script is attached. Let's refer to those DOM Objects
generically, as domObj. For documentation table of contents and indexing purposes, we will say domObj.fu
nction, but that really means any DOM Object, most notably the this object of the moment.

Note that by convention, all properties begin with "_" (underscore). Functions do not. All functions are
followed by (possible arguments). Hence a leading underscore is not required to differentiate the function
reference from some lower-level DOM Object in the DOM Tree.

Scripting | DOM Functions

page 583

domObj.ancestor
(Merge only)

Determine if an object has an ancestor (not necessarily just an immediate parent) of a given name.

Syntax
domObj.ancestor(name)

Returned Value
The domObj pointer of the ancestor with the supplied name, or null if no ancestor with that name exists.

Parameters
name is a string, which is the name of a, considered by you to be a possible, ancestor of this object.

Description
Often a form designer inserts more hierarchy into a form design for various reasons. Script is over 'brittle'
if it uses constructs such as this._parent._parent... so as to get the object of some nearby ancestor. By
using this ancestor function, coding is both easier and more maintainable.

See Also

domObj.childNamed

Scripting | DOM Functions

page 584

domObj.appendInstance
(Merge only)
Dynamically append another instance of an existing, allow multiple child (Pane, that is). Prior to 3.1.001.02,
this applied to panes only. As of 3.1.001.02, it applies to rows as well.

Syntax
domObj.appendInstance()

as of 3.0.003.15... domObj.appendInstance([paneName])

Returned Value
The domObj pointer of the pane that was created. null if something went awry.

Parameters
As of 3.0.003.15, a pane name can be supplied. If supplied then that pane will be cloned from the Form
Template DOM, i.e. not requiring an existing pane instance in the Document DOM.

Description
For all but some minuscule percentage of the time, the merging of data with a form design will
automatically produce the exact number of instances you need. However, we have an existence proof that
a need to script the creation of additional panes does exist. Note that one instance of the pane must exist*.
Hint, it can be mandatory and invisible, but it must exist*. That pane is cloned and appended to the current
set of the parent's child panes.

*As of 3.0.003.15, if a pane name is provided as a parameter then there is no requirement to have an
existing pane instance in the Document DOM.

Example
Terms and Conditions clauses. Having them in your data stream is quite a bit yucky. Having them in your
form design is equally yucky. Yet they do vary. And significantly, really significantly, they are not items that
are the responsibility of the form designer, nor should the constructor of the data want to embed such,
other-department things in "his" data.

So... imagine a folder that is maintained independently by that 'other-department'. It contains rtf files with
the precisely desired wording of each clause. As life marches on, the number of clauses varies. Do let's
keep our form designs and data streams immune from that.

One can write a script to enumerate all the rtf files in the designated T&C folder. Now you just need
sufficient panes to put them in.

clausePath = $F + "/Clauses";
clauses = clausePath + "/*.rtf";

Scripting | DOM Functions

page 585

itemNumber = 0;
_file.findClose(); // Start a fresh file scan
for (fn = _file.findNext(clauses); fn; fn = _file.findNext(clauses)) {
 itemNumber++;
 r = this.Clause.appendInstance(); // Get another pane instance to hold this
clause
 r.fileName._value = fn; // Hidden field with the filename in it, fwiw
 r.itemText._value = itemNumber + "."; // Number the clauses as we go
 r.clauseText._value = "[@" + fn + "]"; // The value just points to the rtf file
 r._visible = true;
}
_file.findClose(); // Be kind to mankind, clean up after yourself

Form Explorer View

Scripting | DOM Functions

page 586

domObj.childNamed
(Merge only)

Determine if an object has an immediate child (not further down descendant) of a given name.

Syntax
domObj.childNamed(name)

Returned Value
The domObj pointer of the child with the supplied name, or null if no child with that name exists.

Parameters
name is a string, which is the name of a, considered by you to be a possible, child of this object.

Description
Often, very often, panes are both not-mandatory and are allowed to occur multiple times. The data will
determine how many of those panes will exist in the _document DOM. The pane may not exist at all. This
function allows you to safely ask, the parent pane (or other containing object type) whether it has any
children of name 'name'.

Example
Consider the classic situation of a Details (plural) parent pane, and an Allow multiple, Detail child
pane. On the parent, Details, pane, one might say:

if (this.childNamed("Detail")) {
 for (var i=0; i < this.Detail._count; i++) {
 ... process each child
 }
}

See Also

domObj.ancestor

Critical Usage

You must learn to use this function! Often folks try to use the _count property of a possible child
pane to see if it is zero. THAT WILL FAIL. If there are no instances of that child, then trying to refer
to a non-existent object's _count property is doomed. Not detectible at compile time. Occurs at
runtime, with DEADLY effect. Protect yourself, and your customers -- use .childNamed("xxxx");

Scripting | DOM Functions

page 587

•
•
•

domObj.bookmark
(Merge only) (as of 3.1.002.02)

Creates a PDF bookmark for a given object.

Syntax
domObj.bookmark(key, value)

as of 3.0.003.15... domObj.appendInstance([paneName])

Parameters
key specifies the main bookmark category, for example, "CustomerContact".

value specifies a sub-bookmark below the category, for example, "ABC Company".

Both parameters must be strings.

Description

Such functions are available now:

_document.bookmark(key, value);
_page.bookmark(key, value);
domObj.bookmark(key, value);

It is also possible to use different kinds of DOM references like this.bookmark(),
this._currentPage.bookmark(), this.parent.bookmark() or

_document.main_pane.detail_table.bookmark(), etc.

Bookmarks to page point to top of the page while bookmarks to an object point to page with vertical offset
trying to point directly to the object.

See Also

_document.bookmark _page

Note that the PDF driver bookmark feature must be enabled either with the PDF .prt file (Default-
PDF.prt) by setting the <Bookmark>Yes</Bookmark> option, or by using the -PDFBookmark Yes
command-line option.

Note that calling _page.bookmark() or domObject._currentPage.bookmark() makes "more"
sense after pagination otherwise it will point at the first instance of logical page.

Scripting | DOM Functions

page 588

domObj.clone
(Merge only) 3.1.001.02

Make an exact copy of a DOM object and add it into the DOM.

Syntax
domObj.clone(placeAfter)

Returned Value
The new DOM object.

Parameters
placeAfter is optional (this feature became available in 3.1.001.10). It defines the object that the cloned
object should come after. Without this parameter, the cloned object will be in the DOM right after the
original object.

Usage
Quite rare.

A simple usage is to clone fields and lines and whatnot and then move the cloned objects around or
change their attributes as befits the occasion.

Another usage is to clone whole pages or series of pages. You can affect copies of part of your document
that way.

Scripting | DOM Functions

page 589

domObj.deleteObject
(Merge only) (as of 3.0.003.21)

Delete an object, and all of its descendants, from the DOM tree.

Syntax
domObj.deleteObject()

Returned Value
true if successful, false otherwise.

It will be false if the script would be committing suicide by deleting the object with which the script is
associated, or by deleting any ancestor of that object.

Description
The most common thing to do when an object is determined to be not relevant to a document, presumably
based on the data of the moment, is to make that object invisible. This goes further by actually deleting the
object.

Why delete an object? An invisible object still exists and still has an extent which will be taken into account
when Merge works out the minimum height to which a containing pane can be shrunk. If the object is not
just invisible but deleted, then that containing pane may be able to be shrunk to a lesser height.

Note that a fresh DOM is created with each new document instance. The object deletion is for one
document instance only.

A script cannot delete the object to which it is attached. E.g. this.deleteObject(); will always fail.
Nor can it delete an object that is an ancestor of itself.

Scripting | DOM Functions

page 590

domObj.descendant
(Merge only)

Determine if an object has a descendant object with a given name.

Syntax
domObj.descendant(name)

Returned Value
The domObj pointer of the descendant with the supplied name, or null if no descendant with that name
exists.

Parameters
name is a string, which is the name of a, considered by you to be a possible, descendant of this object.

Description
The descendant function allows one to write a script that is much easier and more maintainable than a
script that uses the childNamed function to iterate through the levels of hierarchy to find an object by
name.

See Also

domObj.childNamed

Scripting | DOM Functions

page 591

domObj.DOM
(Merge only) (as of 3.1.001.17/21)
Find a DOM object by dotted document object name. Document DOM only, not Data DOM.

Syntax
domObj.DOM(dottedName) (as of 3.1.001.21)

domObj._DOM(dottedName)

Returned Value
The document object that was found or null if it was not found.

Parameters
dottedName defines the name of the object which is to be found. This is a literal string or a variable that
contains a string. E.g. "Details.Detail.Item".

Usage
This can be a very effective, and safe, way to detect whether an object exists. Scripters often make the
mistake of referring to objects in optional panes, causing their script to fail if the referenced pane does not
exist.

this._value = this.optionalPane.Item._value ; // will fail if optionalPane does not
exist

Some scripters try to protect themselves by using: if (this.optionalPane._count > 0)... but that fails,
killing the script if optionalPane does not exist.

More wary scripters might use the childNamed(...) or descendant(...) functions and that is good,
however, this DOM(...) function is hoped to be easier for scripters to use.

Note that DocOrigin's flexibility in dotted names comes to the fore. You do not need to specify every
segment of the object's name. DocOrigin will make intelligent inferences based on the object context (the
domObj in domObj.DOM). It checks the siblings of domObj, then the descendants of domObj, then the
descendants of the siblings of domObj and continually fans out to find a nearby object that satisfies what
was provided in the dotted name argument. Of course, you can supply a full dotted name if you wish.

The important thing is that your script will not fail and you can safely check if the result is null.

See Also companion function

domObj.DOMValue

Scripting | DOM Functions

page 592

domObj.DOMValue
(Merge only) (as of 3.1.001.17/21)
Return the _value property of a dotted object name, or "" if the named object does not exist. Document
DOM only, not Data DOM.

Syntax
domObj.DOMValue(dottedName) (as of 3.1.001.21)

domObj._DOMValue(dottedName)

Returned Value
The _value property of the document object that was found or "" if the object was not found.

Parameters
dottedName defines the name of the object which is to be found and whose _value property is to be
returned. This is a literal string or a variable that contains a string. E.g. "Details.Detail.Item".

Usage
Scripters often want to know the value that was provided for a data item. However, frequently these items
are inside optional panes. Direct reference to such objects runs the risk of having the script fail dead in its
tracks if the referenced optional pane does not exist.

By using this function and supplying the object name in dotted notation you can safely get the value of a
referenced object without fear of running afoul of optional panes that do not exist. If the object (or any of
its ancestors) do not exist the returned value with be "". 99.9% of the time that is the cue that scripters use
to decide on some default action.

The important thing is that your script will not fail and you can safely use the returned result.

See Also companion function

domObj.DOM

Scripting | DOM Functions

page 593

domObj.fillFromNextPage
(Merge only) OBSOLETE
This is used for two-column output. The domObj must be a group object. This function will fill the group
with the objects that flowed into the next page.

Syntax
domObj.fillFromNextPage()

Returned Value
Nothing directly, but the domObj is updated.

Parameters
The real parameter is the domObj itself, which must be a group object.

Description
This is used to produce two-column, page-long, output.

If you persist, good background to this obsolete feature, even if that background is out-dated, is in the
PaneTalk article named: Multi-Column Output.

You design a form as usual except that you make all the panes quite narrow, i.e. only half-or-less the width
of the page (as you would imagine if one is going to make it two columns wide). On the right-hand side of
the container, you draw a group box that represents where the second column is going to go. So, one has a
bunch of flowing, half-width, panes down the left and a tall group box down the right-hand side. The group
box must end at the bottom of the container.

The only code is in the Pagination Completed event of the group. It is merely:

 this.fillFromNextPage();

That's it. The narrow panes will flow as usual, in fact they will overflow the page and onto the next page —
temporarily that is. Then at Pagination Completed time, fillFromNextPage() will pull all the panes on the

Obsolete Function - - Use Design

The best way to achieve multi-column output, since 3.0.003.20, is to use the facility built right into
Design. No scripting is required. In that scenario, you have a full-width parent pane that has one or
more relatively narrow child panes. In the pane object properties of the parent pane you check:
[] Layout in multiple columns.
Having done that, Merge will automatically wrap all of that parent's child panes, that were
instantiated at Data Merge time, into as many columns as can fit in the parent pane. It will do
pagination. It will ensure that the last set of columns are balanced -- i.e. area as much as possible
of equal length.

Scripting | DOM Functions

page 594

next page into the area defined by the group box. Subsequently, when the Pagination Completed event
processing is done on that next page, it will be detected that the page no longer has any panes, and hence
the page will be marked as invisible and not-counted (essentially deleted). So now, two pages have been
folded into one page with two columns.

This is useful only when doing two columns on an entire page, not for two columns within some section of
a page. It relies on the pagination algorithm being able to do its thing with respect to overflowing panes,
inserting headers, etcetera. Whatever panes are instantiated in the next page will be pulled into the right-
hand group of the current page. This also means that it is critical that the group's height and the
container's height match.

Do examine the pictures in the aforementioned PaneTalk article.

Scripting | DOM Functions

page 595

domObj.fillObject
(Merge only)

Fill out an object such that it uses up its full width.

Syntax
domObj.fillObject(text)

Returned Value
Nothing directly, but the domObj is updated.

Parameters
text is a string, most typically the "." string to be appended to the domObj's current value until the domObj
fills up its entire width.

Description
Typically used for a Table of Contents where one wants dots (......) to extend from the end of the text
through to its corresponding page number. It might be used to fill out a cheque amount with "*".

Example
Imagine a Table of Contents such as:

...
2.1 Best Books Ever..23
2.1.1 Moby Dick...24
2.1.2 The Island..26
...

It's no easy matter to know how many dots to add when dealing with proportional fonts.

// When this refers to an object that holds the text for a line in a Table Of Contents
this.fillObject(".");

Scripting | DOM Functions

page 596

domObj.getAllTags
(Merge only) (as of 3.1.002.04)

Merge maintains an internal tag table for various settings that control its behavior and for tags defined by
the user. This routine can be used to fetch all of those tag settings at once.

Syntax
domObj.getAllTags()

Background
All objects have a fixed set of properties and those are accessed via standard DOM property access
functions. However, some objects can take on either extra properties or have properties that are so rarely
set that no specific UI is provided in Design to set them. Instead, Design has a Format > Object Tags...
menu item that allows a form designer to nominate a tag and assign it a value. This open-ended capability
allows many object tags to be set without encumbering the Design UI with "clutter" for tags that are rarely
set. In fact, being open-ended, it even allows for third-party tags to be defined for add-on application
usage.

The getAllTags function requires no parameters and returns a single JavaScript object which has a
property for every tag defined for the domObj. If the domObj has no tags set, a common occurrence, then
the object will have no properties.

Returned Value
A JavaScript object with a property for each tag defined.

Usage example:

_logf("%E -- For %s", this._fullName);
var tags = this.getAllTags();
for (var tag in tags)
 _logf("..Tag %s = '%s'\n", tag, tags[tag]);
// Of course, you might actually do something, not just print them out!

See Also

domObj.setTag

There is also a getTag function to allow your script to get a specific previously set tag. That setting
may have occurred by script or via the Design UI. See domObj.setTag;

Scripting | DOM Functions

page 597

domObj.getObjectsByName
(As of 3.1.002.06)

Find all objects in the current DOM which match a specified name (or names) - find objects that match a
Name.

Syntax
domObj.getObjectsByName(name, [, name ...] [callback])

Parameters
name is either a simple Object Name, or an array of object names to search for.

callback is an optional JavaScript function that will be called for each successful match.

Object names must match exactly in case. If the last character in a 'name' parameter is * it is treated as a
wildcard. So a search for 'Address*' will match objects called 'Address', 'Address1', 'Address2', 'AddressCity'
etc.

Note that a simple parameter of '*' will return a list of all objects below the current object.

var p=getObjectsByName('*'); //returns all subobjects

Returned Value
If a callback function is specified, this function returns TRUE. Otherwise, it returns a javascript array of
pointers to DocOrigin DOM objects. That array is empty if no matches are found.

Background
This routine searches only the current object (typically the object containing this script) as well as all objects
within (under) this object.

When using the callback function, you can cause the search of the DOM to terminate prematurely by
having the callback function return TRUE. Otherwise, the callback is called for every match in the DOM.
This can be useful (for example) if you're only interested in the first match, or already know that there is in
fact only one object that will match. This might improve the program's speed.

Example

var p=getObjectsByName('UnitPrice', 'Amount');

for(i=0; i<p.length; i++) {
 _logf("%d. name='%s' value='%s'", i, p[i]._name, p[i]._value);
}

Scripting | DOM Functions

page 598

The above script will generate a listing of all objects called UnitPrice or Amount. If this script is put on a top-
level object (Form, Page, Container for instance) then all instances are found. If it occurs on a lower-level
Pane it will only find the instances within (under) that Pane.

function myfun(p) {
 _logf("%d. name='%s' value='%s'", i, p._name, p._value);
 if (p._value == 0) return true; // quit when a value of zero is encountered
}

getObjectsByName('UnitPrice', 'Amount', myfun);

This second example does the same thing as the first, but via a callback routine. It also terminates the
search if an object with a value of zero is encountered.

See Also

domObj.getObjectsByType domObj.getObjectsByTag domObj.getObjectsByTagValue

Scripting | DOM Functions

page 599

domObj.getObjectsByTag
As of 3.1.002.06

Find all objects in the current DOM which match a specified tag name - - find objects matching specific Tag
names.

Syntax
domObj.getObjectsByTag(tag, [, tag...] [callback])

Parameters
tag is either a simple tag name or an array of tag names to search fordomObj.

callback is an optional JavaScript function that will be called for each successful match.

If the last character in a 'tag' parameter is * it is treated as a wildcard. So a search for 'BCC*' will match
objects with a tagname that starts with 'BCC'.

Returned Value
If a callback function is specified, this function returns TRUE. Otherwise, it returns a javascript array of
pointers to DocOrigin DOM objects. That array is empty if no matches are found.

Background
This routine searches only the current object (typically the object containing this script) as well as all objects
within (under) this object.

When using the callback function, you can cause the search of the DOM to terminate prematurely by
having the callback function return TRUE. Otherwise, the callback is called for every match in the DOM.
This can be useful (for example) if you're only interested in the first match, or already know that there is in
fact only one object that will match. This might improve the program's speed.

Example

var p=getObjectsByTag('BCC*');

for(i=0; i<p.length; i++) {
 _logf("%d. name='%s' value='%s'", i, p[i]._name, p[i]._value);
}

The above script will generate a listing of all objects with any tag name starting with BCC. If this script is put
on a top-level object (Form, Page, Container for instance) then all instances are found. If it occurs on a
lower-level Pane it will only find the instances within (under) that Pane.

function myfun(p) {

Scripting | DOM Functions

page 600

 _logf("%d. name='%s' value='%s'", i, p._name, p._value);
 if (p._value == 0) return true; // quit when a value of zero is encountered
}
getObjectsByTag('BCC*', myfun);

This second example does the same thing as the first, but via a callback routine. It also terminates the
search if an object with a value of zero is encountered.

See Also

domObj.getObjectsByType domObj.getObjectsByName

Scripting | DOM Functions

page 601

domObj.getObjectsByTagValue
(Merge only) (As of 3.2.001.03)

Find all objects in the current DOM which match a specified tag name with a specified value.

Syntax
domObj.getObjectsByTag(tag, value)

Parameters
tag is a tag name to search for (case insensitive).
value is a tag value to compare with (case insensitive).

Returned Value
It returns a javascript array of pointers to DocOrigin DOM objects. That array is empty if no matches are
found.

Background
This routine searches only the current object (typically the object containing this script) as well as all objects
within (under) this object.

Example

var p = getObjectsByTagValue('TagName', 'TagValue');

for(i=0; i<p.length; i++) {
 _logf("%d. name='%s' value='%s'", i, p[i]._name, p[i]._value);
}

The above script will generate a listing of all objects with tag name 'TagName' and 'TagName' value
'TagValue'. If this script is put on a top-level object (Form, Page, Container for instance) then all instances
are found. If it occurs on a lower-level Pane it will only find the instances within (under) that Pane.

See Also

domObj.getObjectsByTag domObj.getObjectsByType domObj.getObjectsByName

Scripting | DOM Functions

page 602

domObj.getObjectsByType
(Merge only) (As of 3.1.002.06)

Find all objects in the current DOM which match a specified object type (or types) - find all objects that
match an Object Type.

Syntax
domObj.getObjectsByType(type,[,type ...] [callback])

Parameters
type is either a simple Object Type, or an array of object types to search for. The following is a list of
DocOrigin Object Types:

Object type names:

"Form", "Page", "Container", "Pane", "Group", "Line", "Rectangle", "Table", "Row", "Cell"

"Field-Text-String", "Field-Text-Number", "Field-Text-Currency", "Field-Text-DateTime", "Field-Text-Date",
"Field-Text-Time"

"Field-Checkbox", "Field-Radiobutton", "Field-Image", "Field-Barcode", "Field-Comb"

"Label-Text", "Label-Image", "Label-Barcode"

"Arc", "PolyLine" dynamically generated by _chart

callback is an optional javascript function that will be called for each successful match.

Returned Value
If a callback function is specified, this function returns TRUE. Otherwise, it returns a JavaScript array of
pointers to DocOrigin DOM objects. That array is empty if no matches are found.

Background
This routine searches only the current object (typically the object containing this script) as well as all objects
within (under) this object.

When using the callback function, you can cause the search of the DOM to terminate prematurely by
having the callback function return TRUE. Otherwise, the callback is called for every match in the DOM.
This can be useful (for example) if you're only interested in the first match, or already know that there is in
fact only one object that will match. This might improve the program's speed.

Scripting | DOM Functions

page 603

Example

var p=getObjectsByType('Field-Barcode');

for(i=0; i<p.length; i++) {
 _logf("%d. name='%s' value='%s'", i, p[i]._name, p[i]._value);
}

The above script will generate a listing of all Fields that are displayed as barcodes. If this script is put on a
top-level object (Form, Page, Container for instance) then all instances are found. If it occurs on a lower-
level Pane it will only find the instances within (under) that Pane.

function myfun(p) {
 _logf("%d. name='%s' value='%s'", i, p._name, p._value);
 if (p._value == 0) return true; // quit when a value of zero is encountered
}

getObjectsByName('Field-Barcode', myfun);

This second example does the same thing as the first, but via a callback routine. It also terminates the
search if an object with a value of zero is encountered.

See Also

domObj.getObjectsByTag domObj.getObjectsByName

Scripting | DOM Functions

page 604

domObj.getPickedObjects
(Merge only) (As of 3.1.002.06)

Find all objects in the current DOM which have been flagged as 'picked'.

Syntax
domObj.getPickedObjects()

domObj._DOM(dottedName)

Returned Value
This routine will always return a JavaScript array of pointers to DocOrigin DOM objects. Objects are flagged
as 'picked' in DocOrigin Merge either by explicit setting the _picked attribute of an object, or by Design
when calling an External Tool command.

That returned array is empty if no matches are found.

Background
This routine searches only the current object (typically the object containing this script) as well as all objects
within (under) this object.

Scripting | DOM Functions

page 605

domObj.insertPage
(Merge only) (As of 3.0.002.04)

Insert a static page after the current page.

Syntax
domObj.insertPage(pageName[,placeBeforePageObject])

The optional placeBeforePageObject was added in 3.0.003.27.

Returned Value
Nothing directly, but the DOM is updated with the new page being inserted.
Since 3.1.001.18, the domObj of the inserted page is returned.

Parameters
pageName is a string that is the name assigned to a page definition at design time.

placeBeforePageObject is optional and is a page object (not a string), e.g. _document.Page3, not "Page3".

domObj makes the most sense as a page object. If it is a lower-level object, it really means the page that
the object is on. As of 3.2.001.01, the domObj can be the top-level form object, i.e. _document. In which case
the inserted page will be at the end of the current set of pages, or, if supplied, before
placeBeforePageObject.

Description
Sometimes one wants to conditionally insert a separator page, or one has a "layout 1" that repeats many
times, but you want to insert a Terms and Conditions page as the second page in that sequence. This
insertPage() function works very well for those scenarios.

This function makes sense in only Pagination Completed script. It's complete nonsense if used at Data
Merged time.

Without the placeBeforePageObject option, the inserted page is placed right after the page the domObj is /
is on. Typically, one would use this function on a page object and say: this.insertPage("pageName");

The inserted page will not participate (have participated in) the data merge operation. Hence the inserted
page must be designed as a static page, or at least have all desired panes as mandatory panes (ergo,
effectively static). Global variables and automatic variables can be used. Any script in the inserted page's
Pagination Completed (or later) events will be executed.

As with any page, you can choose to page-number it or not number it. In most cases, inserted pages tend
to fall into the not-numbered camp, but that's your design choice.

Note that this function does not insert some instance (occurrence) of an already merged page. Instead, it
inserts an empty copy of a page layout as per its design. You are not moving pages around, but inserting a

Scripting | DOM Functions

page 606

clone of a design-time page taken from the design file. The page to be inserted should not be marked as
mandatory, and not have any fields on it that might cause the page to be emitted by the merge process.
Your use of the insertPage() function is the only reason this page should come out.

See Also

domObj.clone

Scripting | DOM Functions

page 607

domObj.relayout
(Merge only) (As of 3.1.002.04)

Re-layout a DOM object and all its descendant objects.

Syntax
domObj.relayout()

Returned Value
None.

Usage
Quite rare.

A simple usage is to establish the actual height of a field that contains a reference like [@xxxx.rtf].
relayout will replace that reference with the contents of the file "xxxx.rtf" and word wrap the resulting
text. After that has been done _height will return the actual height of that object.

Scripting | DOM Functions

page 608

domObj.reparent
(Merge only)

Make an object in the DOM have a new parent object.

Syntax
domObj.reparent(newParent, [xOffset, yOffset])

Returned Value
Nothing.

Parameters
newParent defines the object which will be the new parent object for domObj. Clearly this should be an
object such as a page, pane, a group, or a container, not a field or label.

However, it's also acceptable for newParent to be zero. That indicates that domObj is to simply be removed
from the document DOM. (as of 3.1.001.15)

xOffset is the optional new _left for the object once it has its new parent. Defaults to zero (as of
3.2.001.01).

yOffset is the optional new _top for the object once it has its new parent. Defaults to zero (as of
3.2.001.01).

Usage
Very rare and unusual.

This has been used to move objects into different groups or panes. Generally, it has been used in some
form of "columnarizing". Given the built-in facilities to Layout in multiple columns, the usage of this
function has dropped.

It has been used to move objects off of one page and onto another one. This essentially allowed pages to
be merged after pagination had been completed. Clearly, special circumstances were involved.

Note that you could easily supply 0 for xOffset and yOffset and after the fact set ._absLeft etc. as desired.

Scripting | DOM Functions

page 609

domObj.setTag
(Merge only) (previously named setParm, but that name is deprecated)

Merge maintains an internal tag table for various settings that control its behavior. This routine can be
used to change these settings - set an internal tag value.

Syntax
domObj.setTag(name, value [, driver])
domObj.getTag(name, [, driver])

Parameters
name is the tag name to be set.

value is the value to be assigned.

driver is an optional printer driver designation used when setting driver-specific parameters. This is strictly
for convenience's sake. You could just as easily have used: drivername as the name. For example:
"PDFBarcode39Text" as the name is identical to "Barcode39Text", "PDF".

Background
All objects have a fixed set of properties and those are accessed via standard DOM property access
functions. However, some objects can take on either extra properties or have properties that are so rarely
set that no specific UI is provided in Design to set them. Instead, Design has a Format > Object Tags...
menu item that allows a form designer to nominate a tag and assign it a value. This open-ended capability
allows many object's tags to be set without encumbering the Design UI with "clutter" for tags that are rarely
set. In fact, being open-ended, it even allows for third-party tags to be defined for add-on application
usage.

These tags participate in the cascading tag philosophy of overriding tags between .prm files,
overriding .prm files, command-line options, .prt configuration settings, and now these Design UI-specified
or script-specified tag settings.

We expect that you will set applicable defaults in your configuration files and for the rare times when you
want a different value, you can use setTag to accomplish that setting change on an object-by-object basis.
Of course, you can also override configuration settings via Design's Format > Object Tags... user interface.
The choice is yours.

In practice, override tags are most often used to tweak one or two of the myriad barcode symbology
options when you have to deviate from your standard configured settings.

setTag can also be used for PDF/UA (Accessibility) tags. Being able to 'walk the DOM' and use scripting to
set accessibility tags is quite powerful. But of course, Design's Format-Object Tags... UI can be used as well.

You may invent other uses for tags of your own as well.

(see domObj.getTag).

Scripting | DOM Functions

page 610

Example

this.setTag("BarcodeAUSPOSTText", "N"); // No text with this barcode
this.setTag("BarcodeAUSPOSTBarWidth", "0.5mm"); // set the bar width

Returned Value
setTag: None.

Old names
At one point these functions were called setParm and getParm. Those names still exist as synonyms for
backward compatibility purposes but the preferred names, as of 3.1.001.08 are setTag and getTag. For the
technically curious, you can see the Design UI generated tag names and values for an object in its
<parms> ... </parms> element in the XATW.

See Also

_parser.parms domObj.getTag

Scripting | DOM Functions

page 611

domObj.getTag
(Merge only)

The getTag function allows your script to get a previously set tag (see domObj.setTag). That setting may
have occurred by script or via the Design UI.

Syntax
domObj.getTag(tagName [, driver])

Parameters
tagName is either a literal string or a variable that identifies the sought-after tag.

driver is an optional printer driver designation used when setting driver-specific parameters.

As of 3.1.001.03, there is a _parser.parms(string) function for scripts that run outside of Merge and are
reading the XML of the XATW file. It parses the names and values that were set for the "tags" at Design time
or by means external to DO processes. Generally, this is used for value-added packages that have their
own set of tags to manage.

Background
What are the valid settings? Check your prt files, especially in the barcode section. In Design, when you
select an object and use Design's Format > Object Tags... menu item you will see a list of any existing tags.
You can add new tags if you like. Tags added at Design time are saved in the XATW. Tags added via script
during Merge are not -- Merge never writes out the XATW.

The getTag syntax is simply this.getTag(tagName [, driver]) where tagName is either a literal string or
a variable that identfies the sought after tag.

As of 3.1.001.03 there is an _parser.parms(string) function for scripts that run outside of Merge and are
reading the XML of the XATW file. It parses the names and values that were set for the "tags" at Design time
or by means external to DO processes. Generally, this is used for value-added packages that have their
own set of tags to manage.

Example

Returned Value
getTag: The string value of the chosen tag.

Old names
At one point these functions were called setParm and getParm. Those names still exist as synonyms for
backwards compatibility purposes but the preferred names, as of 3.1.001.08 are setParm and getParm. For

Scripting | DOM Functions

page 612

the technically curious, you can see the Design UI generated tag names and values for an object in its
<parms> ... </parms> element in the XATW.

See Also

_parser.parms

Scripting | DOM Functions

page 613

domObj.sum
(Merge only) (As of 3.0.005.07)

Compute the sum of all descendant (child) fields with a specified name.

Syntax
domObj.sum(fieldname)

Returned Value
The sum of all fields name "fieldname" below the current object.

Parameters
fieldname is a fieldname to search for.

Scripting | DOM Functions

page 614

domObj.xhtmlToRtf
(Merge only) (As of 3.1.001.21)

Return an RTF string that represents the given XHTML string.

Syntax
domObj.xhtmlToRtf([sStr])

Returned Value
RTF representation of the given string.

Parameters
sStr is optional. It defines the string of XHTML text to be converted. Without this parameter, the current
value of domObj is used.

Usage
Very rare.

Examples
When domObj is a field that is currently populated with xhtml markup this script will replace the xhtml with
its rtf equivalent.

this._value = this.xhtmlToRtf();

When another object named (field1) contains xhtml markup this script will replace domObj's value with the
rtf equivalent of field1's value.

 this._value = this.xhtmlToRtf(field1._value);

To set domObj's value to the rtf equivalent of a literal string that contains xhtml markup.

 this._value = this.xhtmlToRtf("Here is some bold text");

Scripting | DOM Properties Accessing the Document Structures

page 615

DOM Properties Accessing the Document Structures
In the Merge context one often wants to refer to properties of the objects in the various DOMs: _document,
_page, _data. There is quite a large set of available properties to get, and often to update as well.

Note that the Script Editor dialog in DocOrigin Design provides you with ready access to these property
names (and function names as well) by using a right-click context menu. You don't have to memorize every
spelling, but do read through the upcoming lists and establish an understanding of all that is available.

Not only do the DOMs themselves begin with "_" (underscore), but all properties do as well. This is to
differentiate a DOM Object property such as _width from a potential DOM Tree element of, say,
_document.Carton.width.

Property Description

._absLeft

._absRight
These are read-only convenience functions for getting the absolute
positions, in microns, of the left and right of the object's virtual
minimum enclosing rectangle. (See also ._left, ._right).

._absTop

._absBottom
These are convenience functions for getting and setting the absolute
positions, in microns, of the top and bottom of the object's virtual
minimum enclosing rectangle. (See also .top, .height). Note that
these are computed properties not static ones. When one sets
_absTop, one actually sets the _top of the object such that if _absTop
were recomputed it would come out as desired. Similarly, setting
_absBottom actually sets the _height of the object so that its
_absBottom would evaluate to the desired value.

._adjustHeight Return or set the 'Adjust height' flag for a field - one of: true or false.
(As of 3.1.002.06)

._adjustWidth Return or set the 'Adjust width' flag for a field - one of: true or false.
(As of 3.1.002.06)

._allowBreakAfter Return or set the 'Allow Break After' flag for a pane - one of: true or
false. Setting this makes sense only before the pagination, not
afterward. (As of 3.1.002.06)

._allowBreakBefore Return or set the 'Allow Break Before' flag for a pane - one of: true or
false. Setting this makes sense only before the pagination, not
afterward. (As of 3.1.002.06)

._allowSplit Return or set the allow split flag for a pane, group, field or text label -
one of: true or false. (As of 3.1.001.10)

Scripting | DOM Properties Accessing the Document Structures

page 616

Property Description

._allowMultiple Return or set the allow multiple flag for a pane or row - one of: true
or false. Setting this makes sense at only Start-of-Job or Start-of-
Document, not afterward. (As of 3.1.001.10)

._autoFormat Set to false to turn off automatic formatting of fields using Picture
formatting. Note that setting to true does nothing. (Normally any
Picture formatting is automatically applied to whatever value is in a
field. Use this setting to inhibit normal picture processing. For
example
this._value = Quantity._value * Price._value;

if (this._value < 0) {

this._value = "VOID";

this._autoFormat = false;

}
This code would calculate an extended price and presumably format
as currency. If the value was less than zero, the field would instead
display VOID.

._background

._backgroundColor
Return or set the background color. See Colors page for options.

._border Return or set the display of an object's border, one of: true or false.

._borderColor Return or set color of rectangle border. See Colors page for options.

._borderRadius Return or set the radius for rounded corners. Returned values in
microns. See the Script Units description for setting values.

._bottomInset Return or set the bottom inset for the object's border. Returned
values in microns. See the Script Units description for setting values.
See Inset sample in the Design User's Guide for use case and
collateral.

._bottomMargin Return or set the bottom margin. Returned values in microns. See
the Script Units description for setting values.

._caption Return or set the caption field property. (As of 3.1.002.06)

._collate Return or set the collate paper property. Best used on the form
object!

._color Return or set the text color. See Colors page for options.

https://docs-admin.docorigin.com/display/DES/Inset

Scripting | DOM Properties Accessing the Document Structures

page 617

Property Description

._count Counts the number of sibling occurrences of a Pane or Row. Includes
itself in the count. CAREFUL - see domObj.childNamed

._currentContainer Returns a pointer to this object's Container object.

._currentPage Returns a pointer to this object's Page object.

._dataSource Return the Data DOM object whose value was used to populate this
field. This makes sense on only Document Field objects. In other
cases, it will return NULL. See the _data section for details on what
attributes can be used with a Data DOM object.

._date Returns the string value of a field interpreted as a date and
formatted as "yyyyMMdd" a string, empty string on failure. (As of
3.2.001.03)

._dateObj Returns the JavaScript Date object initialized by the value of a field
interpreted as a date, null on fail. (As of 3.2.001.03)

._duplex Return or set the form or a page's duplex property: one of "dontChange",
"simplex", "top", "left".
 (As of 3.1.001.10)

._edge Return or set the drawing of the object's borders. Values are "all",
"none" or any combination of: "top", "bottom", "left", right",
separated by a space.

._firstChild Return the first (or only) child object of the current object. For
example, if the current object is a Pane, then one could get the first
object in that Pane. (See also ._nextSibling.)

._fontBold Return or set a field's font bolding status. true/false.

._fontItalic Return or set a field's font italic status. true/false.

._fontSize Return or set a field's font point size.

._fontStrikeThrough Return or set a field's font strike through status. true/false. (As of
3.1.001.15)

._fontTypeface Return or set a field's font typeface name.

https://docs.docorigin.com/reference-manual/scripting/dom-properties-accessing-the-document-structures#:~:text=of%20the%20DOM.-,._nextSibling,-Return%20the%20next

Scripting | DOM Properties Accessing the Document Structures

page 618

Property Description

._fontUnderline Return or set a field's underline option: one of "none", "single",
"word", "double".

._fullName Return the fully qualified name of the object in dotted notation. E.g
_document.SampleInvoice.Page1.CONTAINER1.InvoiceTable
This is most applicable when walking the DOM via ._nextNode.

._global Return whether a field is marked as global or not. Essentially read-
only, since by Data Merged, setting it would have no effect
whatsoever. Meaningless on non-field objects. (As of 3.0.003.11)

._height Return or set the height of an object. Returned values in microns.
See the Script Units description for setting values.

._hjustify

._horzJustify
Return or set the horizontal justification "left", "right", "center",
"spread", "spreadAll".

._hyperlink Return or set a field's hyperlink URL. See Hyperlinks for further
information on hyperlinks.

._imageMode Return or set graphic image clip mode "Scale", "Clip", "Resize",
"Stretch" or "FitWidth".

._imageName Return or set the image file name of a label object.

._initialValue Return or set a field's initial value. This makes sense only before the
End of Merge event. (As of 3.2.001.01)

._input Return or set a field's input status (true/false). See Fillable Forms for
further information and examples.

._inputAmPm Return or set Input Field AM/PM setting. If true use 12hr clock and
AM/PM option, otherwise use 24hr clock.

._inputChoice Return or set Input Field choice list. See Fillable Forms for more
information.

._inputClearButton Return or set Input Field Signature Clear button text. See Fillable
Forms for more information.

._inputImage Return or set Input Field Image. See Fillable Forms for more
information.

Scripting | DOM Properties Accessing the Document Structures

page 619

Property Description

._inputLabel Return or set Input Field Label for choice lists, radio buttons etc. See
Fillable Forms for more information.

._inputOrder Return or set Input Field AM/PM setting. If true use 12hr clock and
AM/PM option, otherwise use 24hr clock.

._inputReadonly Return or set Input Field Readonly status (true/false). See Fillable
Forms for more information.

._inputRequired Return or set Input Field Required status (true/false). See Fillable
Forms for more information.

._inputRequiredMessage Return or set Input Field Required message text. See Fillable
Forms for more information.

._inputShortMonth Return or set Input Field Date month style - true to display 'Jan', false
to display 'January'. See Fillable Forms for more information.

._inputShortYear Return or set Input Field Date year style = true to display 09, false to
display as 2009. See Fillable Forms for more information.

._inputTray Return or set the printer Input Tray for the current page.

._inputURL Return or set Input Field Post destination url. See Fillable Forms for
more information.

._inputYear Return or set Input Field date year range. See Fillable Forms for more
information.

._lastChild Return the last (or only) child object of the current object. For
example, if the current object is a Pane, then one could get the last
object in that Pane. (See also ._prevSibling.)

._left

._top
Return or set left or top position. Returned values are always in
microns. See the Script Units description for setting values. Note -
the position is relative to top-left of the containing pane/cell/group.
(See also ._absLeft, ._absTop)

._leftInset Return or set the left inset for the object's border. Returned values in
microns. See the Script Units description for setting values.

Scripting | DOM Properties Accessing the Document Structures

page 620

Property Description

._leftMargin Return or set the left margin. Returned values in microns. See the
Script Units description for setting values.

._lineSpacing Return or set line spacing for text. Returned values are always in
microns. See the Script Units description for setting values.

._lineStyle Return or set the line style: one of "solid", "dash", "dot", "dashDot".

._locale Return the _locale JavaScript object which is in effect for the current
object. If the object's locale is not set then the ancestor objects are
traversed to find the inherited locale. (As of 3.2.001.09)

._localeName Return or set the locale name (e.g. en_US) for the current object.
Often this will be null and the ancestor tree will have to be followed
to find the inherited locale in effect. (As of 3.1.00.10)

._mandatory Return or set the mandatory flag for a pane, row or page - one of:
true or false. Setting this makes sense at only Start-of-Job or Start-of-
Document, not afterward. (As of 3.1.002.04)

._minHeight Return or set minimum height allowed for this pane. Returned values
in microns. See the Script Units description for setting values.

._name Return or set an object's name.

._nextNode Return the next object in the DOM from top to bottom. This is an
easy way to walk the entire DOM. NULL is returned at the end of the
DOM.

._nextSibling Return the next child of a parent. Follows usage of ._firstChild,
or ._lastChild. NULL is returned if no more children exist in the
desired next/prev direction.

._num Returns the value of a field as a raw number. This will remove any
existing number formatting from a field value such as $1,234.56 and
return the number 1234.56.

._numberOfChildren Return the number of children that the given object has.

._numberOfPages Return the total number of pages in the document. This applies only
on or after the Pagination Completed event.

Scripting | DOM Properties Accessing the Document Structures

page 621

Property Description

._numCopies Return or set the number of copies to be produced. Best used on the
form object!

._occurrence Return an object's occurrence number within its enclosing parent
pane. The numbers start at 0 the third occurrence of an object would
return a value of 2. Typically used with repeating panes.

._onSplitHeader Return or set the "OnSplit Headers..." property for Pane or "Overflow
Headers..." for Container. It's space-separated list of header panes.
(As of 3.1.002.06)

._onSplitFooter Return or set the "OnSplit Footers..." property for Pane or "Overflow
Footers..." for Container. It's space-separated list of footers panes.
(As of 3.1.002.06)

._originalForm Return a page's "original form name" for a composite form created
using DocOriginCombineForms.

._outputBin Return or set the printer Output Bin for the current page.

._overflowText Return any text that overflows from a fixed-size text field. Not
applicable to 'Single line' fields, or fields with 'Adjust height' checked.

._pageBreak Return or set page break flag for a Pane.

._pageCount Return the number of pages in the document. This makes sense only
after the Pagination Completed event.

._pageCountForm Return the number of pages in the form. (As of 3.1.002.02)

._pageNumber Return the page# of the object document based.
Note that since repeating line items (panes) typically cause multiple
pages to print, the final page number is not set until the
OnEndPaginate() event. Prior to this event, all fields will have the
same page number.

._pageNumberForm Return the page# of the object form based. (As of 3.1.002.02)

._pageOrientation Return or set page orientation ("Portrait"/"Landscape"). (As of
3.2.001.01)

Scripting | DOM Properties Accessing the Document Structures

page 622

Property Description

._pagePlacement Return or set a page's placement property: one of "any",
"anyFromFront" (As of 3.2.001.11), "front", "back". (As of 3.1.001.10)

._paperSize Return or set paper size ("A4", "Letter", etc.). (As of 3.2.001.01)

._paperType Return or set the Printer Paper Type for the current page.

._parent Return the parent object of the current object. This returns NULL
when at the top of the DOM's ancestor stack.

._picture Return or set a field's picture clause. DocOrigin uses the ICU package
for picture formatting. See setting-time-zones.

._presence Return or set the presence of an object, one of: "yes", "no", "none".
"none" indicates that the object takes up no space at design or print
time.

._prevSibling Return the previous child of a parent. Follows usage of ._firstChild,
or ._lastChild. NULL is returned if no more children exist in the
desired next/prev direction.

._raw Return the current field/text value. For fields, this is the value before
field formatting has been applied (number, currency, date, and so
on).
See ._value.

._rightInset Return or set the right inset for the object's border. Returned values
in microns. See the Script Units description for setting values.

._rightMargin Return or set the right margin. Returned values in microns. See the
Script Units description for setting values.

._rowCount Counts number of child Rows or Panes of a Table or Pane. Table
rows marked as headers or footers are ignored in this count.

._sheetCount Return the number of sheets of paper required to print the
document. This makes sense only after the Pagination Completed
event.

._singleLine Return or set the 'Single line' flag for a field - one of: true or false. (As
of 3.1.002.06)

https://unicode-org.github.io/icu/userguide/format_parse/datetime/#setting-time-zones%22

Scripting | DOM Properties Accessing the Document Structures

page 623

Property Description

._templateObject Return the Template (Form) DOM object from which the given
Document DOM object was created. This makes sense on only
Document DOM objects. In other cases, it will return NULL. This is
useful for retrieving the value that an attribute was set to at design
time. Often _height has a different value in the Document DOM than
it has in the Template DOM.
For example:
var designHeight = this._templateObject._height;

._textWidth Returns the width of the longest (widest) line in a text block, in
microns. See also _overflowText.

._thickness Return or set the border thickness, in microns (1/1,000,000 of an
inch).

._topInset Return or set the top inset for the object's border. Returned values in
microns. See the Script Units description for setting values.

._topMargin Return or set the top margin. Returned values in microns. See the
Script Units description for setting values.

._transparent Return or set the object's transparency (true or false). Set to true on
an image to allow what is under the image to show through in the
image's lighter areas. See TransparencyMask in your configuration
file.

._type Return the type of a document object. See the table of those type
values below.

._value Return or set the current field/text value. The returned field value
has formatted text after applying the formatting (number, currency,
date, and so on) to the original data.
See ._raw.

._viewerAttributes Return or set a field's viewer attributes. See Fillable Forms for further
information and examples.

._visible Return or set the visibility of the field or label, one of: true or false.

._vjustify

._vertJustify
Return or set the vertical justification "top", "bottom", "middle".

Scripting | DOM Properties Accessing the Document Structures

page 624

Property Description

._width Return or set the width of an object. Returned values in microns. See
the Script Units description for setting values.

Object type values returned from object._type

"Form", "Page", "Container", "Pane", "Group", "Line", "Rectangle", "Table", "Row", "Cell"

"Field-Text-String", "Field-Text-Number", "Field-Text-Currency",
"Field-Text-DateTime", "Field-Text-Date", "Field-Text-Time"

"Field-Checkbox", "Field-Radiobutton", "Field-Image", "Field-Barcode", "Field-Comb"

"Label-Text", "Label-Image", "Label-Barcode"

"Arc", "PolyLine" dynamically generated by _chart

Examples
1. The following example determines the sum of an amount_total field by page:

// abbreviation for repeating panes
var r = _document.main_pane.detail_table.detail_line;
var sum=0.0; var page=1;

for (var i=0; i < r[0]._count; i++) {
 if (r[i]._pagenumber != page) { // when the page# changes, print info
 _printf("Sum for page %d is %10.2f\n", page, sum);
 sum = 0.0; page++;
 }
 sum = sum + r[i].extended_amount._num;
}
_printf("Sum for page %d is %10.2f\n", page, sum);

2. While it is not often that scripting adjusts object locations, here is an example that makes a "trailer" pane
into a page"footer". Used in the Pagination Completed event. Imagine that this is on a "totals" pane or
something of that nature.

// Place this pane at the very bottom of the container
this._absTop = this._currentContainer._absBottom - this._height;

Scripting | Debugging Script

page 625

•

•

•

Debugging Script
DocOrigin Merge provides a number of options and functions to assist in debugging scripts:

the -trace command line option.

This causes the program to write a detailed trace log of its execution steps as the script is being
executed. Note that the trace file is overwritten on each run (whereas the log file is appended to).
Use this command option as follows:

... -trace "C:/DocOrigin/User/test/trace.log" ...

the _tracef function call.

This can be used within your script to write information directly to the trace file specified in the -trace
command line option. If -trace is not specified it does nothing. Well, not quite nothing. If you are
tracing out values that require work to create (a favorite is ._fullName, which is fairly expensive to
come up with) then that effort/time will be expended even though no trace output will be generated.
As of 3.1.002.03, you can use conditional commenting, by prefacing the _tracef line with !!, to fully
remove any processing costs.

the _message function call (Windows only).

This is a variation of the _message function that will display a message as a Windows popup message
box. It has effect only when the -debug command-line option has been specified. That means that you
can leave it in during production (where -debug is not set!). Well, see the conditional commenting
remarks above. That applies here too. By the way, there is a _dlogf() function as well. Log output
occurs only when -debug is specified.

For example:

 _dmessage("my var='%s'", myvar); // display myvar

Techniques

See all Command-Line Options
Sometimes you just want to know what the command line options were and any other information that
has been provided to your script. The following is a fine way to see everything in _job.

if (typeof _job != "undefined") {
 for (var prop in _job)
 _logf("_job.%s = '%s'\n", prop, _job[prop]);
 if (typeof _job.command != "undefined")
 for (var prop in _job.command)
 _logf("_job.command.%s = '%s'\n", prop, _job.command[prop]);

Scripting | Debugging Script

page 626

 if (typeof _job.options != "undefined")
 for (var prop in _job.options)
 _logf("_job.options.%s = '%s'\n", prop, _job.options[prop]);
 if (typeof _job.filter != "undefined")
 for (var prop in _job.filter)
 _logf("_job.filter.%s = '%s'\n", prop, _job.filter[prop]);
}

In general, it is good to become friends with the standard JavaScript features of:

typeof variable

and for (var prop in object) ... object[prop]

Note: As of 3.1.001.24 the function _job.logf(["context string"]) was added to all of the above logging
of the _job object. The context string is optional. It simply helps to identify where in the script you are
dumping out this info.

Also in 3.1.001.24, a similar function, _cache.logf(["context string"]) was introduced to easily log all
the _cache settings defined at the time of the call.

Walk the DOM
Well, suppose you just want to know your whole world, perhaps wanting to see what the names really are
as opposed to what you think is out there:

_logf("\n%E -- The entire document DOM..\n");
for (var r=_document; r; r=r._nextNode) {
 _logf(".. '%s'\n", r._fullName);
}
_logf("\n\n");

It's a great habit to put single quotes around strings that you are debugging. You might be surprised how
often there is a trailing (or leading) character that you did not expect.

Of course, you can walk other DOMs than the _document DOM, e.g. the _data dom, or an individual page's
_page DOM. And you can start at some level other than the root of the DOM.

Sometimes you may be surprised by what doesn't show up. A bit of reflection can then lead to an 'Ahah'
moment.

Note the use of _fullName. It's a wonderful thing.

What pages do I have
At Pagination Completed time it is often desirable just to 'walk' through all the pages. This can be true at
Data Merged time too, but less often, in my experience.

You cannot use for (var prop in domObject). The performance penalty to support that would be far
too great. You have to know the property names of those dynamic DOM objects.

Scripting | Debugging Script

page 627

_logf("\n%E -- All my pages..\n");
for (var pg=_document._firstChild; pg; pg=pg._nextSibling) {
 _logf(".. '%s'\n", pg._fullName);
}
_logf("\n\n");

The trick here is that page objects are always the immediate children of the top-level _document object.
That makes the above loop far faster than using the entire _nextNode loop depicted farther up.

Naturally, you might want to look at more than the names of the pages, and you might want to predicate
your logging with whether pg._visible is true. It's all available at your property's fingertips.

Note that %E is a special format specifier. It requires no parameter. It reports the name of the event that
this script is in, e.g. "Data Merged" or "Pagination Completed". Use it. It might tweak you to the fact that
you put your script in the wrong event.

What panes do I have
Suppose you are on a page object and you want to know what panes have been instantiated for this page
[instance]. You could use:

_logf("\n%E -- All panes of '%s'..\n", this._fullName);
for (var pn=this._firstChild; pn; pn=pn._nextNode) {
 if (pn._type == "Pane")
 _logf(".. '%s'\n", pn._fullName);
 if (pn._type == "Page") break;
}

Because panes can be nested, you can't use just _nextSibling. Instead, use _nextNode. But now you have
way too many nodes. Use the _type property to select only the type of object that you want. It happens that
you will be surprised at all the instances that it reports, or perhaps more so, doesn't report. It's very helpful
to know these things.

See Also

-phase _cache - scripting object

Scripting | Colors

page 628

Colors
DocOrigin scripting defines a number of pre-defined color names that can be used on document objects.
You can also specify colors using standard RGB notation.

Setting Colors
Colors may be set by either specifying the RGB value of the color or using one of the pre-defined color
names from the table below. RGB values must be specified as a 6-digit hex code with an optional #
character preceding it. As of version 3.0.002.07 colors may also be specified as a 3-digit hex code such as
#3fe which will be expanded to #30f0e0. (This is compatible with standard browser syntax).

When the color of a DocOrigin object is returned it will always be returned in the 6-digit format, with no
leading # character.

 Address._color = "red";
 Item._color = "FF0000"; // equivalent of "red"
 Item2._color = "#FF0000"; // alternate notation
 a = Item2._color; // returns "FF0000"

Note that all color settings - whether pre-defined names or hex codes - must be defined as strings.

Pre-defined Colors

Transparent FFFFFFFF

Beige F5F5DC

Black 000000

Blue 0000FF

Brown A52A2A

Coral FF7F50

Cyan 00FFFF

DarkGray A9A9A9

GreenYellow ADFF2F

Scripting | Colors

page 629

Gray 808080

Green 00FF00

LightBlue ADD8E6

LightCyan E0FFFF

LightGreen 90EE90

LightGray D3D3D3

LightPink FFB6C1

LightYellow FFFFE0

Magenta FF00FF

Orange FFA500

Pink FFC0CB

Red FF0000

Salmon FA8072

Turquoise 40E0D0

Yellow FFFF00

White FFFFFF

To set the text background to transparent use: this._backgroundColor = "transparent";

See Also

DOM Properties

Scripting | Script Units

page 630

Script Units
Several script extensions require the setting of document object positions or sizes. For example:

Field1._left = "1.5in";

Internally DocOrigin stores all positions and sizes in units of microns - 1/1000000 of an inch. When you
request the value of an object's position or size you will get back an integer value in microns. However,
when you set the value of a position or size you can also specify the number in various convenient units of
measure:

Field0._left = 1500000; // 1500000 microns
Field1._left = "1.5in"; // 1500000 microns
Field2._left = '1.5"'; // 1500000 microns
Field3._left = "10pt"; // 1389 microns
Field4._left = "1.5cm"; // 590551 microns
Field5._left = "15mm"; // 590551 microns

Note that when doing arithmetic on these coordinates that you must use microns. The
function _toDOUnits can also be used to convert from the above units to microns. The
function _fromDOUnits can also be used to convert from the microns to the above units.

Field2._left += _toDOUnits("1in"); // move 1 inch to the right
Field3._left += 1000000; // also move 1 inch
_fromDOUnits(2000000, "in"); // returns 2 (inches)

See Also

_toDOUnits

Overrides | Script Units

page 631

Overrides
User preferences and other options can be defined with parameter (PRM) and other files in the Overrides
folder ($O). This sectional reviews those file options.

Overrides | Custom Design Script Menu

page 632

•
•
•

•
•

•

•
•

•

Custom Design Script Menu
Users can create custom options in the Design Script Editor by placing a DesignScriptMenu.json file in the
DocOrigin Overrides ($O) folder. The example below shows some simple, real JavaScript options along with
a few "Sample Only" entries. In this example, options will display:

directly in the top menu
child menu with seven real JavaScript Samples
and a second child menu level with 3 fake samples

$O/DesignScriptMenu.json

{
 "Direct Snippet at Top of Script Menu" : "insert script goes here",
 "Custom Menu with List of Snippets" :
 {
 "Sum Example" : "this._value = _document.sum('INSERT_FIELD_NAME')",
 "Hide Parent if this is Blank" : "if (this._value == '') this._parent._presence
= 'none'",
 "Log String with Raw Value" : "_logf('My message is = %s',this._raw)",
 "Data-driver Placeholder" : "this.setTag('placeholder',
_data.insertQualifiedFieldName._value + '.pdf')",
 "Show Me on Face (Odd Page) - Must be On Pagination Completed" : "if
(this._pageNumber % 2 == 0) this._presence = 'none'",
 "Remove Extra Trailing CR" : "this._value = this._value.replace('\n', '')",
 "Child Custom Menu with Snippet List" :
 {
 "Sample Snippet 1" : "xxx",
 "Sample Snippet 2" : "yyy",
 "Sample Snippet 3" : "zzz"
 }
 }
}

As you can see in the screenshot below, two new top-level options are shown, Direct Snippet at Top of
Script Menu and Custom Menu with List of Snippets.

You can create a set of options with a parent menu by enclosing it in curly brackets.
The name shown to the user is on the left side of the colon (:) enclosed in double-quotes such as "Sum
Example"

The inserted script is on the right side of the colon (:) enclosed in double-quotes such as "this._value =
_document.sum('INSERT_FIELD_NAME')"

If your script contains quotes, single quotes must be used
You can include placeholders to help the user such as INSERT_FIELD_NAME

Each option in a list must be divided by a comma

Overrides | Custom Design Script Menu

page 633

• Try it! Create a file called DesignScriptMenu.json and place it in your $O/Overrides folder and paste the content
above.

File Naming Conventions | Characters Restricted from File Names

page 634

File Naming Conventions

Characters Restricted from File Names
File names in DocOrigin are, by default, restricted to names that do NOT contain any of the following
characters

?[]=+<>;',*"

nor any ASCII control characters (0x00 - 0x1F).

The restricted characters [] are interpreted as embedded field name references. Actually, it is more than
just form fields -see <span style="text-decoration: underline;
">Automatic and Embedded Fields for a list of possible substitutions. Note that very many
of those substitutions are available in only Merge.

Embedded references are processed before the character restrictions take place.

If any of the restricted characters are present in an output file name they are automatically replaced with
the underscore character. For example, a file name of f?r+ed will be converted to f_r_ed.

File names supplied for input files (e.g. a form name) will not replace the restricted characters and thus
may generate errors if the Operating System rejects the name.

As of version 3.2.001.01, the user has control over the application of character restrictions via the
command line option -RestrictedFileNames Yes/No; the default is Yes. A value of No will allow
the restricted characters to be used, but your OS may object and processing failures may occur.

File Naming Conventions | % Placeholders in File Names

page 635

% Placeholders in File Names
File names can contain one or more of the following case-sensitive substitution strings, which are
expanded at run time.

%a - abbreviated weekday name (for example, "Wed")
%A - full weekday name (for example, "Wednesday"
%b - abbreviated month name (for example, "Mar")
%B - full month name (for example, "March")
%d - replace with the 2 digit current day
%D - replace with the current data file name (no path or extension) (as of 3.0.005.05)
%F - replace with the current form name (no path or extension)
%f - replace with the current form name
%H - replace with the 2 digit current hour (local time, 24 hour clock)
%I - replace with the 2 digit current hour (local time, 12 hour clock)
%i - in a Folder Monitor context, replace with the Folder Monitor instance name
%j - replace with the 3 digit day-of-year (001-366)
%m - replace with the 2 digit current month
%M - replace with the 2 digit current minute
%p - current locale's AM/PM indicator for 12 hour clock
%P - replace with the current process id (as of 3.0.003.20)
%S - replace with the 2 digit current second
%t - the full path of the temporary output file produced when using the run:: syntax
 (Merge-only) (as of 3.0.004.05)
%T - replace with the path of the DocOrigin temp folder (as of 3.0.003.20)
%u - replace with a short, file safe, unique string (as of 3.0.003.20)
%U - Week of year (2 digit 00-53, starting on Sunday)
%v - last output file path+name+ext (Merge-only) (as of 3.1.002.07)
%w - Weekday as number (0-6), starting on Sunday
%W - Week of year (2 digit 00-53, starting on Monday)
%x - last output name+ext (Merge-only) (as of 3.1.002.07)
%y - replace with the 2 digit current year
%Y - replace with the 4 digit current year
%z - last output file name only (Merge-only) (as of 3.1.002.07) %% - replace with %

For example the command line setting:

-logfile $L%d_%m_%Y_logfile.txt

Would generate a logfile named:

C:\DocOrigin\User\Logs\15_03_2012_logfile.txt

assuming March 15, 2012 were the current date.

The above % placeholders may be used in command line options. However, if a file name template
string with embedded % placeholders were passed as an argument to a script function, you would
not get your desired result. Script functions do not automatically expand the % placeholders listed

File Naming Conventions | % Placeholders in File Names

page 636

Folder Monitor Instance Name Substitution
In the Folder Monitor context the special placeholder, %i can be used to include the monitor instance
name in file name specifications.

If you are not using "Multiple Monitors", but just the "Default Monitor", then the sequence _%i will be
replaced with nothing (discarded).

E.g.

-logFileFormat $L/FM_%i_%U.log
-queue1 $U/FolderMonitor/%i/Jobs

For a monitor instance named AdHoc with DocOrigin installed in the usual location, those would become,
in week 23:

-logFileFormat C:/DocOrigin/User/Logs/FM_AdHoc_23.log
-queue1 C:/DocOrigin/User/FolderMonitor/AdHoc/Jobs

For the Default monitor, it would be:

-logFileFormat C:/DocOrigin/User/Logs/FM_23.log
-queue1 C:/DocOrigin/User/FolderMonitor//Jobs

above. The user is expected to exert control over their file names by using _file.resolveName or
_resolve – which do handle the % placeholder substitutions. The user would pass the resolved file
name to the script function.
Script functions do automatically resolve $X folder mappings if they are used in an argument that
is for a file or directory name.

$X String Substitutions | Paths.prm

page 637

$X String Substitutions
Using a parameter file, it is possible to set up some shortcuts or abbreviations for commonly used
command strings. Any statement of the form:

$X = string or
$X string

where X is any single uppercase letter, and string is any string of characters.

Subsequently, anywhere that $X appears in a value string, it will be replaced by the value of its associated
string.

For example, consider the following two files:

Paths.prm

* Paths.prm
* $U User directory
$U $R/User
* $F is the user's forms directory
$F $U/Forms
* $L directory for log files
$L $U/Logs

Test.prm

@Paths.prm
-logfile $L/%d_%m_%y_logfile.txt
-form $F/DynamicForm.xatw
-data $F/DynamicForm.xml

When the command line Merge @Test.prm is executed, each occurrence of $L and $F in Test.prm will be
replaced by the path values defined in Paths.prm.

This is recursive. $R is C:/DocOrigin (usually set at install time), hence one can define $U relative to $R and
$F relative to $U.

Whenever you run a script within a DocOrigin program these $ values are also automatically defined in the
JavaScript environment. So if you set

$Z "this is my string"

on the command line (or in a .prm file), then when you run a script, the JavaScript variable named $Z will be
pre-defined with the value this is my string. E.g., as if you had hand-coded the following at the start of your
JavaScript (.wjs) file:

$X String Substitutions | Test.prm

page 638

$Z = "this is my string"

Note that RunScript scripting is not PHP. RunScript does NOT do text substitution in string literals. For
example, $F is indeed, literally "$F" and not automatically "C:\DocOrigin\User\Forms". But since $F is
defined as a JavaScript variable, you could say
var myForm = $F + "/MyForm.xatw";

Notice that one includes the directory separator character in the concatenation.

Update: Having said all that, if a string such as "$F/MyForm.xatw" were passed to a DocOrigin script utility,
to a file open operation, DocOrigin does now automatically replace the $F with whatever path is defined
for it. That applies to any $X variable. But this is for those special file opening use cases only. As said
before, it is not replaced automatically as PHP does, at value assignment time, but rather it is replaced
when and if used in a file open operation. We call this operation HardenPath.

See Also

_resolve and _file.resolveName for ways to explicitly resolve references to $X-type variables, and
more.

By the way, within DocOrigin scripting and parameter files, you can always use / as the directory
separator. \ works as well but often one has to escape it as in \\. It's easier and more consistent to
use /.

$X String Substitutions | External file include

page 639

External file include
In data item values or label values, you can use a file reference rather than a literal value. You supply this in
the format: [@fileName.ext]. Since you do not have scripting available right in the data stream, it is
mightily convenient that something like [@$A/myAdImage.jpg] does work, first hardening the $A to
whatever path it is defined to be. Similarly for [@$U/Clauses/myClause.rtf].

Please see also _file.resolveName as the scripting way to "harden a path".

$X String Substitutions | Startup $'s

page 640

Startup $'s
By default the DocOrigin Install provides a set of pre-assigned $ values in the Default-DocOrigin.prm file
and automatically includes them in the main applications. This in turn means any scripts you write can use
those settings.
When any DocOrigin executable begins it will immediately set the following internally:

$B The initial base working directory - the directory the program is running in

$E The path to the executable being run e.g. c:/DocOrigin/DO/bin

$N The base name of the executable (no extension); e.g. Merge

$T The path for DocOrigin temp files <tmp>/AtwTempFiles. Where <tmp> is the user's TMP
env var setting

After that, each DocOrigin executable will automatically load $E/Default-DocOrigin.prm and follow along its
use of @@includes of other .prm files. During this process, it updates the definition of any $X variable as
soon as it runs across it.
Of course, you are allowed to, and should, add or update your $X variables. However, these have proved so
convenient that some are used in the code and their meaning should not be tampered with:

$R The DocOrigin install directory

$U The DocOrigin User root folder – $R/User

$C Where the user's printer configuration files (.prt) reside – $U/Config

$S Where scripts reside – up to you, possibly $U/Overrides, or $U/Scripts

$O Where User override files reside

$L Where log files reside – $U/Logs, by default

$F Where form files reside. – Up to you, $U/Forms seems likely

$P Semicolon separated paths used to find files. – Automatically postfixed with $E

You can update the paths that those point to as long as that path reflects the meaning described above.
For example, if you wish to have the message files somewhere other than standard, ok, put them there and
update $M to point to that new location for message files.

Our thought is that you should stick with $V, $W, $X, $Y, and $Z. If you need more than that please advise
us.

$X String Substitutions | Startup $'s

page 641

$P was introduced in 3.1.002.01. It differs from all the other folder mappings in that it is a semicolon-
separated list of folders which define a "DO PATH" to be searched. Typically it would be used in a
_run("$P/executable.exe", ...) context. The named file would automatically be looked for in each
folder specified in $P, and if not found in any of them, $E would also be searched. If you know the
executable is in $E you should use $E, not $P. $P is handy when referencing a third-party executable (e.g.
ImageMagick.exe) where its installed location might vary from system to system. While less likely, $P might
be used for any file, e.g. in an _file.fopen("$P/resource.xxx", "r") context. As of 3.1.002.06 it is
possible to use environment variables within $P, like [PATH].

$X String Substitutions | Special $'s

page 642

Special $'s
(Merge only) There are two special variables. Often auxiliary collateral needed by Merge is located relative
to the supplied form file or data file. So...

$$F
$$F means the folder where the form specified by -form is. (or first form if a form list is being used). Note
that it is not 'the folder where forms are usually kept', but is rather more specific, referring to the folder
where the form is for this run of Merge. If DocOriginCombineForms is used, resulting in a temporary form
file, that has no bearing, $$F will be the folder used/implied in the -form parameter.

$$D
$$D means the folder where the data specified by -data is. Running filters which create temporary versions
of the data file have no bearing, $$D will be the folder used/implied in the -data parameter.

These have no connection with, are not at all intertwined with $F or $D, whatever they might be. These are
two, independent, special variables.

It is possible to say -data $$F/../data/xxx.xml. That is, you can define $$D by using $$F.

(FilterEditor only) There is one special variable.

$$X
$$X means where the .xfilter file is. $$X occurs inside .xfilter files. Its use makes .xfilter files and their
related collateral more portable, e.g. for support requests or sharing with other team members.

Glossary | Special $'s

page 643

Glossary
Term Definition

Container A rectangular area within a page object into which dynamic content in the form of
one or more panes gets flowed vertically.

DocOriginSend
MailServer

Usually, it is impractical to wait for a connection to a mail server to have a single
email sent. Instead one often queues email packets in a folder, and
DocOriginSendMailServer is launched, without waiting, to effect the connection to
the mail server and send the emails. DocOriginSendMailServer is not truly a server
as it will exit as soon as all queued-up emails have been sent. It will be started again
once a new email is to be sent.

Data Explorer This is the panel that can be revealed in the Design UI. You nominate a sample XML
file to be depicted in the Data Explorer. After that, you can drag elements or even
whole structures onto the design canvas in order to create fields with the
appropriate names.

Design canvas The middle part of the Design UI where you draw objects for your form layout.

Document The result of Merge processing one set of data, combined with the form. Many
documents can be included in a single spool file or a single PDF. Think of a document
as one invoice, or one statement.

Dynamic form A form that is constructed in Design such that the objects may be in either fixed or
non-fixed locations on the page(s). The objects or object groups in non-fixed
locations are typically intended to allow for multiple occurrences of the associated
data in the data stream. When the dynamic form is combined with the data stream
in Merge, the content of the data stream, that is, the number of occurrences of each
non-fixed object group flows down page(s), generating output that uses as many
pages as necessary to satisfy the data. Technically, a dynamic form has at least
one Container object and one or more Pane objects.

Data DOM
(Document
Object Model)

A hierarchical representation of the data loaded from the XML data file.

Document DOM A hierarchical representation of the document to be "printed". Fields are populated
with data from the Data DOM. The Document DOM is the result of combining the
Form DOM with the Data DOM.

Glossary | Special $'s

page 644

Term Definition

Filter This is typically a data preprocessor that massages the input data into suitable XML
for merging into a form. Various filters are supplied and custom ones can be
deployed as well.

FilterEditor This is a UI tool for graphically defining the rules for extracting data from a spool
report file so as to create structured XML for merging into a form.

FolderMonitor This facility allows jobs dropped into watched folders to be detected and processed.

FolderMonitor
Instance

One can have several FolderMonitors running simultaneously, each monitoring its
own watched folders. Each running FolderMonitor is termed an 'instance'.

Form DOM A hierarchical representation of the form as it was defined in Design.

Form Explorer This is the panel in the Design UI that is typically on the left-hand side. It depicts the
hierarchical structure of the form design. Objects may be selected in the Form
Explorer, just as they can be on the design canvas. In the Form Explorer, objects may
be dragged up or down in the form structure.

Fully Qualified
Name

The hierarchy of tag names for an element from an XML data file. The fully qualified
name is the target data field name preceded by the tag names of all of its ancestors,
for example:
InvoiceTable.DetailLine.Quantity

Note that the XML tag names are case-sensitive, therefore, DetailLine.Quantity is
not the same as DetailLine.quantity.

Fully Qualified N
ame
Element Node

One level in the reference hierarchy of a fully qualified name, for example,
DetailLine in the example above.

Group A Group object on a form template is a rectangular area which can contain other
text, fields, images, or other graphical objects. It creates another level of structure to
the data. Unlike a Pane, it is not dynamic.

Job The name given to the entire set of data that Merge is processing that may result in
one or more documents. Merge executes a single job each time it is run.

Job Name Disco
very

This is a script (JavaScript) that is used by FolderMonitor to quickly examine the job's
data file and determine the applicable 'job name' (job type).

Glossary | Acronyms

page 645

Term Definition

Job Processing S
cript

This is a script that is run by FolderMonitor, well, FMTransaction actually, to process
the data for a given job. The script typically performs a Merge of the data and a
nominated form but may include as many steps as you like.

Job Queue This is a combination of a watched folder name and a file mask which defines which
files are to be detected by FolderMonitor. Many such queues may be defined.

Pagination After the data has been merged into the document DOM, it's quite likely that
containers will be filled with more panes than will fit in the container. The pagination
phase then breaks such overflowing containers into multiple pages such that each
container is as full as is permitted by the form design's Allow split, Break before,
Break After, Force Break rules.

Pane A rectangular object that may contain a set of one or more nested panes or any
combination of: table, field, label, group, line, and box objects. Panes are the only
objects that flow down the container from one page to the next in a dynamic
document. Tables and fields nested within a pane may be split across pages but for
that to happen they must be nested within a pane.

Static form A form that is constructed in Design such that the objects are in fixed locations on
the page(s). The locations are set in Design and cannot be altered by Merge
processing. Technically, a static form has no Container objects and no Pane objects.

Acronyms

Acronyms Definition

DOSMS DocOriginSendMailServer = for sending queued email

FE In a Design context: Form Explorer; outside of Design: FilterEditor

FM FolderMonitor

FVR Form Verification Report -- produced in Design

JND Job Name Discovery script used by FolderMonitor

JPS Job Processing Script used by FolderMonitor

MTX Metrics -- Font Metrics file extension

PRM Parameter file extension

Glossary | Acronyms

page 646

Acronyms Definition

MPRM Merge parameter file extension -- On Windows, it has an association with
Merge.exe

PRT Printer Confguration file extension

QM QueueMonitor

WJS "Wonderful" JavaScript file extension

XATW Xml All The Way -- the form design extension

Return Codes | Acronyms

page 647

Return Codes
DocOrigin applications report return codes, most typically in the logs. The following provides a brief
explanation of each.

The return code numbers were changed so as to be compatible with Unix which restricts return codes to
the range 0 to 255.

If your script or filter executable provides a return code, we request that it be in the 200 to 250 range.

Return Codes | Filter program return codes

page 648

Filter program return codes

RC Mnemonic Meaning

0 OK/SUCCESS All is well.

1 ambiguous Deliberately not used. Does it mean true/Ok or not-
zero so not Ok?

2 ERR_FILTER_ARGLIST Data Filter argument list is invalid.

3 ERR_FILTER_INPUTFILE Data Filter input file cannot be opened.

4 ERR_FILTER_OUTPUTFILE Data Filter output file cannot be created.

5 ERR_FILTER_FORMFILE Data Filter form file cannot be opened.

6 ERR_FILTER_PROCESS Document sort has encountered issues with the XML
data file.

7 ERR_COMBINEFORMS_ARGLIST Combine forms argument list is invalid.

8 ERR_SCRIPT_INPUT_FILE When parsing in JavaScript the input file was not
found.

9 ERR_SCRIPT_OUTPUT_FILE When parsing in JavaScript the output file could not
be written.

10 ERR_SCRIPT_DATA_CONVERT Error parsing a comma-delimited file.

11 ERR_SCRIPT_FORMAT Error parsing a fixed format data file to XML.

Return Codes | DocOriginSendMailServer return codes

page 649

DocOriginSendMailServer return codes
For _sendMail

RC Mnemonic Meaning

21 ERR_EMAIL_ARGLIST DocOriginSendMailServer has invalid arguments.

22 ERR_EMAIL_SCANFOLDER No -mailscanfolder option has been provided.

23 ERR_EMAIL_FROM The from address was not supplied or is invalid.

24 ERR_EMAIL_ATTACH An attachment file was not found.

25 ERR_EMAIL_TO No To address was supplied, or is invalid.

26 ERR_EMAIL_CC The Cc address is invalid.

27 ERR_EMAIL_BCC The Bcc address is invalid.

28 ERR_EMAIL_TEXTOPEN The @file specified for the text mail body was not
found.

29 ERR_EMAIL_SEND cURL was unable to send the email message.

30 ERR_EMAIL_SMTPHOST The -smtphost option was not specified.

31 ERR_EMAIL_HTMLOPEN The @file specified for the HTML mail body was not
found.

32 ERR_EMAIL_EMLOPEN Could not create the email packet file to send.

33 ERR_EMAIL_CURLCMDOPEN Could not create the cURL command file with which
to invoke cURL.

34 ERR_EMAIL_ATTACH_OPEN An attachment file could not be accessed. Check
CombineDocuments.

Return Codes | Merge return codes

page 650

Merge return codes

RC Mnemonic Meaning

41 ERR_MERGE_ARGLIST Invalid or missing argument list.

42 ERR_MERGE_NOFONTS The configuration has no fonts defined.

43 ERR_MERGE_CANNOTLOG Log file undefined or not writable.

44 ERR_MERGE_NOCONFIG Missing or invalid Configuration file.

45 ERR_MERGE_NOFORMFILE No form file specified.

46 ERR_MERGE_NODATAFILE No data file specified.

47 ERR_MERGE_LOADSCRIPT Error loading the -scriptFile script.

48 ERR_MERGE_FILTER A filter provided a non-zero return code.

49 ERR_MERGE_FORMLOAD Could not load the form file.

50 ERR_MERGE_WORDWRAPFORM Could not word wrap the text in a document.

51 ERR_MERGE_PROCESSSCRIPT Error processing any Merge event script.

52 ERR_MERGE_DATAOPEN Could not open the data file.

53 ERR_MERGE_DATAPROCESS Error while processing all the data documents.

54 ERR_MERGE_FORMANDDATA Error merging the data with the form design.

55 ERR_MERGE_EMBEDDEDFIELDS Error while embedding [fields] in the document.

56 ERR_MERGE_WORDWRAPDOC Error word-wrapping the document.

57 ERR_MERGE_PAGINATE Error paginating the document.

58 ERR_MERGE_PRINTDOCUMENT Error printing the document.

59 ERR_MERGE_GLOBALS Error while copying global values to applicable global
fields.

60 ERR_MERGE_AUTOFIELDS Error while populating the automatic fields.

Return Codes | Merge return codes

page 651

RC Mnemonic Meaning

61 ERR_MERGE_TO_TOO_LONG unused

62 ERR_MERGE_CC_TOO_LONG unused

63 ERR_MERGE_BCC_TOO_LONG unused

64 ERR_MERGE_ATTACH_TOO_LON
G

unused

65 ERR_MERGE_NO_OUTPUT_DATA Name not provided for the creation of sample data.

66 ERR_MERGE_CREATE_SAMPLE_D
ATA

Could not create the sample data.

67 ERR_MERGE_MISSING_PROFILE Could not load profile (including printer table).

68 ERR_MERGE_PLACEHOLDERS Failed to process placeholders.

Return Codes | PDFExtract return codes

page 652

PDFExtract return codes
These -ve PDFExtract return codes were in use up to 3.1.001.16

RC Mnemonic Meaning

41 ERR_MERGE_ARGLIST Invalid or missing argument list.

70 ERR_INPUT_OPEN_ERR An input PDF file could not be opened

71 ERR_OUTPUT_OPEN_ERR The output PDF could not be opened

72 ERR_PDF_READ_ERR An input PDF file could not be read

73 ERR_DO_MISSING_ERR The DocOrigin document index markings are missing

74 ERR_INVALID_PAGELIST The -page option is incorrectly specified

75 ERR_NO_EMBEDDED_DATA The input PDF does not have its data embedded

76 ERR_NOT_A_DO_PDF An input PDF is not a DocOrigin-produced PDF

77 ERR_NO_EXTRACT_FILE No file name provided for -extractdata

78 ERR_ATTACH_OPEN_ERR A file to be attached could not be opened

Return Codes | Folder Monitor return codes

page 653

Folder Monitor return codes

RC Mnemonic Meaning

81 ERR_NO_DATA_FILE No data file found to process.

82 ERR_FILE_NOT_FOUND Data file has disappeared since it was enumerated.

83 ERR_FILE_NOT_OPENED Even after retries, the job's data file could not be opened.

84 ERR_NO_TRANSACTION No job name was provided for this job.

85 ERR_RECORD_AS_ERROR Could not move a failed job to the error folder.

86 ERR_RECORD_AS_PROCESSED Could not move a processed job to the processed folder.

87 ERR_FOLDERMONITOR_NO_A
RGLIST

Folder Monitor was given no arguments at all.

88 ERR_FOLDERMONITOR_ARGLI
ST

Arguments needed for Folder Monitor are missing.

89 ERR_FOLDERMONITOR_INVAL
IDARGS

An argument to Folder Monitor is invalid.

90 ERR_NO_QUEUES The -queue1 option has not been specified.

91 ERR_NO_SCRIPT_FOLDER No -scriptFolder option has been provided.

92 ERR_NO_ERROR_FOLDER No -errorFolder option has been provided.

93 ERR_INVALID_ERROR_FOLDER The specified error folder name is invalid.

94 ERR_INVALID_PROCESSED_FO
LDER

The specified processed folder name is invalid.

95 ERR_ADDING_QUEUE Could not add another -queuen to Folder Monitor's list of
queues.

96 ERR_INVALID_SCAN_FOLDER The folder to scan for jobs is invalid.

98 ERR_FAIL_STOP_MONITOR (as of 3.0.003.20) Have your Job Processing script return this
so as to both fail the job and stop the host FolderMonitor
instance.

Return Codes | Folder Monitor return codes

page 654

RC Mnemonic Meaning

99 ERR_PASS_STOP_MONITOR (as of 3.0.003.20) Have your Job Processing script return this
so as to pass the job but also stop the host FolderMonitor
instance before starting on a new job.

100 ERR_KEEP_STOP_MONITOR (as of 3.0.003.20) Have your Job Processing script return this
so as to stop the host FolderMonitor instance before starting
on a new job, and keep this job in the queue for when the
instance is started again.

Return Codes | Process spawning return codes

page 655

Process spawning return codes

RC Mnemonic Meaning

111 ERR_SPAWN_PROCESS The creation of a process failed.

112 ERR_NOT_LICENSED Non-Design, non-Merge, tool used without a license.

113 ERR_PIPE_PROCESS The piping while creation of a process failed.

Return Codes | Scripting return codes

page 656

Scripting return codes

RC Mnemonic Meaning

12
1

ERR_SCRIPT_COMPILE The JavaScript code did not compile.

12
2

ERR_SCRIPT_EXECUTE The JavaScript code had an execution error.

12
3

ERR_SCRIPT_FILE_NOT_FOUND The JavaScript file was not found.

Return Codes | XFilter return codes

page 657

XFilter return codes

RC Mnemonic Meaning

-2 MERGETRANSFORM_UCONV uconv failed.

-3 MERGETRANSFORM_CC Convert carriage control failed.

-4 MERGETRANSFORM_XFILTER Error loading .xfilter file.

Return Codes | Reserved for unix

page 658

Reserved for unix

RC Mnemonic Meaning

127 missing command Very often, unix shells report 127 if they cannot
find the program to be executed.

128-140 unix signal Unix often reports 128 + the applicable signal
number.

251-255 small negatives One often sees 255, which is because someone
returned -1

Return Codes | User return codes

page 659

User return codes

RC Mnemonic Meaning

200-250 reserved for you If your scripts or filters or whatever you run issue a
return code, it would be nice if it were in this range.

Return Codes | Return codes on Unix

page 660

Return codes on Unix
On Unix systems, process return codes are limited to 8 bits, i.e. 0 to 255. In order to finesse our way around
this obstacle we often negate the return code and in Merge at least, coalesce the higher numbered return
codes to unused smaller numbers so as to be valid return codes for Unix. It's definitely a problem and one
reason why we hope to replace the reporting of return codes with the reporting of meaningful strings.

Now that we have renumbered the return codes that we use, this isn't as much of a problem. However,
scripts or whatnot may still give us out-of-unix-range return codes.

Latest ReadMe | Return codes on Unix

page 661

Latest ReadMe
You can find the latest product ReadMe below.

DocOriginInstall64-3.2.001.11.pdf

https://docs.docorigin.com/reference-manual/files/44729338/58196344/1/1658799828000/DocOriginInstall64-3.2.001.11.pdf

Web Services | Return codes on Unix

page 662

1.
2.
3.

Web Services
The DocOrigin web services allow you to use DocOrigin remotely. Both the REST and SOAP web service
types are supported. They are independent units but utilize the same core to provide the same
functionality.

Here is a short (but incomplete) list of the most obvious scenarios when it may be useful:

Integrate DocOrigin document generation services into your applications.
Use DocOrigin from web pages.
Use DocOrigin from an OS which DocOrigin doesn't support.

Web Services | Processing Details

page 663

1.
2.
3.
4.
5.
6.

1.
2.
3.
4.
5.
6.

Processing Details
The unit of work for a DocOrigin web service (WS) is termed a "job". What that job does is defined by a
previously deployed script. Either the delivered default script or a user-customized script may be invoked
by the DocOrigin WS call. The WS is almost certainly requested to deliver a data payload, and may also
provide additional user-defined options if so desired.

Of course, the WS always returns a result. Certainly, it will return operational 'headers' but most frequently
it also returns the primary result of the job, quite typically a PDF file. (But it could be anything.) One call and
you get your result delivered to you.

WS requests may choose either sync or async mode. The vast majority are done in synchronous fashion.
You make the call and the result is returned to you ASAP. However, you can initiate an async job, and make
later requests for the status and collateral of the defined 'job'.

When the WS is requested to do a job, it creates a new, uniquely named, folder for that job. All resources
pertaining to that job are kept in that job's folder. More on this below, but retain the concept of 'job
folder'.

REST and SOAP web services both provide similar request choices:

Run a job, sync or async
Get a status/result of a job
Delete job data (the entire folder created specifically for the identified job)
Get a list of files available for a job (i.e. the files left by the script in the job's folder)
Get a specific file for a job (e.g. log.txt)
Get a WS version

REST API
The REST API is best seen via the built-in "Swagger" docs. Use the Tomcat manager application and click on
your web service or the URL:

http(s)://[host:port]/DORest/1.3/api-docs?url=/DORest/1.3/swagger.json

to navigate there.

The API includes:

Execute a job (sync or async)
Delete the job folder
Get the job result
Get a list of a job's available files
Get a selected job file
Execute Merge job (as of v. 1.3.5)

Web Services | Processing Details

page 664

1.
2.
3.
4.
5.
6.
7.
8.

SOAP API
The SOAP API is best seen via its WSDL. Use the Tomcat manager application and click on your web service
or the URL

http(s)://[host:port]/DOSoap/1.3?wsdl

You may use that wsdl for your SOAP client implementation.

The API includes:

runJob (sync)
submitJob (async)
deleteJob
getJobResult
listJobFiles
getJobFile
runMerge (sync) (as of v. 1.3.5)
submitMerge (async) (as of v. 1.3.5)

Job Internals
All configuration values mentioned below are taken from the provided [Default-]DocOriginWs.ini file. See
Configuration.

For reference, what follows is a sample WS configuration override file: $O/DocOriginWs.ini:

* DocOrigin Web Services configuration
TempPath=C:\DocOrigin\User\Temp
KeepJobHours=1
* RunTimeoutSec=60
* JobInfo=jobInfo.properties
Input=DOWebService.input

When the web service (WS) receives a request to run a job, it creates a new folder under the path specified
by the TempPath configuration value. The name of the created folder is guid-like (e.g. 1fb4e383-fe9f-475e-
ad90-45ffc981f5e2) and in fact is the "jobid" assigned to the job.

The WS then places the supplied input (data) file into that folder with the file name specified by
the Input configuration value. Note that the configuration names (e.g. Input) are case-sensitive.

(Before v. 1.3.5) The WS then executes DocOrigin's RunScript program providing it a set of command line
options:

Option Command line options that your script receives

-cd the just created, jobid-named, job folder

-input

the file name of the input data supplied to the WS (not passed if input is not supplied to
WS)

Web Services | Processing Details

page 665

Option Command line options that your script receives

-script $E/Default-WsRun.wjs (or the scriptName parameter supplied to the WS)

-logfile log.txt (which will be in the job folder)

-options [value of the options parameter] (not passed if options is not supplied to the WS)

(As of 1.3.5) The WS then executes DocOrigin's command template (specified by
the cmdDefault configuration value). By default it runs RunScript program providing it a set of command
line options:

Option Important command line options that your script receives

-cd the just created, jobid-named, job folder

-input the file name of the input data supplied to the WS

-script $E/Default-WsRun.wjs (or the scriptName parameter supplied to the WS)

-logfile the name of the log file (which will be in the job folder)

-options value of the WS options parameter

-user the name of the WS user requested the job

-async boolean value representing sync/async type of call

Note that options is not DocOrigin specific but rather an arbitrary string which your script understands.
e.g. key1=value1;key2=value2. The WS itself has no idea what you might put in that options string. It's yours
to use as you wish.

What your script does is completely up to you. Typically, it quickly examines the supplied data file contents
and determines what processing should be done, for example, which form design file to apply. The script
might also look at the supplied options for guidance on what specific user actions apply to this request.
Those options are user-defined, the WS is oblivious to them.

The delivered $E/Default-WsRun.wjs is a great example to start from, if you want to create a customized
script. If you do supply a custom script it must be pre-deployed on the server that is hosting the WS.
You cannot send the actual script content along with the WS request. That would be super dangerous.
Control your WS-accessible scripts.

Returned Results
The WS is designed in a way such that it can immediately return one result file and several properties. The
file to return is defined by the output property described below. Typically the result file is a DocOrigin

Web Services | Processing Details

page 666

1.

2.

3.

Merge generated PDF file, but it could be anything. Notice that, with further calls to the WS, you can get
other results from your job as well. See the API. Typically a single call with a single result suffices.

While your script does whatever you want, it has to keep in mind these rules:

The script has to create a 'communications' file named jobInfo.properties (by default) in its job
folder. That file name has whatever name you defined in the JobInfo configuration value. That file is
to contain a set of name=value lines. The content of the file will be read by the WS and returned to
the caller. For example, in REST, those 'job info properties' are returned as do.xxx response headers
and the nominated output file is returned as the response body. See the info block below.
Some names in the jobInfo.properties file have a special meaning:

jobInfo.properties critical contents

outp

ut

if set, is used by the WS as the file name of the primary 'result' file which is to be returned
to the caller as the response body.

mime if set, is used as the content-type of the "output". (often application/pdf, or plain/text as
applicable.

jobInfo.properties must be created as the very last operation of your script since the WS decides
whether the job is complete by checking for this file's existence.

The WS returns three special info fields back to indicate job execution state:

(These are returned as response headers in REST)

WS REST response headers

do.jobId the assigned job id (and name of the job's folder)

do.completed is true if jobInfo.properties exists and can be parsed.

do.exitCode is the return code of the executed command.

For reference, what follows is a fairly typical set of response headers from a REST WS call. Please draw your
attention to the custom headers that begin with "do.".

HTTP/1.1 100 Continue

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
do.completed: true
do.jobId: f4469907-d668-4cb0-9a93-75e994fdeb73
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: do.completed, do.jobId, do.exitCode, do.property.rc, do.p
roperty.message, do.property.output, do.property.mime

jobInfo.properties must be created in job's folder. See "Limitation" topic.

Web Services | Processing Details

page 667

1.
2.
3.
4.

do.exitCode: 0
do.property.rc: 0
do.property.message: OK
do.property.output: C:\DocOrigin\User\Output\PurchaseOrder_2016-001.pdf
do.property.mime: application/pdf
Date: Thu, 13 Jun 2019 23:23:14 GMT
Content-Type: application/pdf
Transfer-Encoding: chunked

Note, that the jobId is available to you, and you will need that if you choose to make more WS API calls
regarding this same job. Also note that the WS special do.jobId, do.exitCode, and do.completed headers
are differentiated from the user-defined headers by being named only do.xxx and not do.property.xxx.

For more correlation, the following is the jobInfo.properties file contents for the above job:

rc=0
message=OK
output=C:\DocOrigin\User\Output\PurchaseOrder_2016-001.pdf
mime=application/pdf

Note, that async calls return only limited set of data (like jobId) because job is not yet completed by the
time of WS response. You may ask for job data later using jobId.

As of v. 1.3.4, added do.service.url, do.service.base, do.service.path to Web Service response header.

Limitations
WS is designed with some build-in automation regarding job outcome. Like, in synchronous scenario WS
automatically returns the generated output back to the client. So WS has to know where and how the
output is called, you do not want to break this automation. Also, you do not want one job to spoil the file-
system results of the other jobs.

By default your script starts out with its current directory being the 'job folder'. It is not recommended to
change the current directory in your script or form for the reasons mentioned above. All work should be
done in the job's folder, and jobInfo.properties must be created there.

Also, while you are welcome to specify "business-level" options like -cache, -config, etc., it is not
recommended to set "system-level" options like output location, logfile location, etc. for the same reasons.

The only useful exception of these rules we can think of is the case when you want a fire-and-forget (async)
job sending output directly to some printer. Then it is OK to specify custom output location.

The Default Script
By default, DocOrigin provides the $E/Default-WsRun.wjs script which

consumes an XML file
tries to determine the applicable form name
tries to find that form under %DO_ROOT%\DO\Samples\
runs DocOrigin Merge to generate a PDF

Web Services | Processing Details

page 668

5.

•
•

returns that PDF as the request response.

The WS returns additional information. For example, in REST, we return do.jobId, do.completed,
do.exitCode plus all other name=value pairs from the jobInfo.properties file as do.property.xxx
response headers.

Out-of-the-box, you can try the WS by executing a job and passing %DO_ROOT%
\DO\Samples\Sample_Invoice.xml as the input parameter. You should receive a generated PDF back.

Direct Merge call
As of v. 1.3.5, new functionality was added - direct Merge call. It is /jobs/merge for REST and run/
submitMerge for SOAP.

This allows you to avoid any script calls which speeds up output generation and simplifies set up process.

Let's say at client side, having your data file ready you already know that you want a form called
Sample_invoice.xatw and PCL output. So you may call /jobs/merge REST WS just passing:

input data in input parameter
say -form $R/DO/Samples/Sample_invoice.xatw -config Default-LJ4.prt in options parameter

As a result, a single Merge call will be executed using supplied data file and options, and resulting output
returned back to the client.

Note, you should be careful which options you are sending with this call. It is natural that you will want to
send something "business-level" like -form, -config, -cache, etc. But do not pass "system-level"
options like -cd, -logfile, etc. See "Limitation" topic.

Calling The WS
How do you 'execute a job', i.e. call/invoke the WS? Well..

There are lots of ways, as many ways as there are computer languages and frameworks. The WS
distribution package includes a 'reference implementation' for a Java-based invocation of the WS. You can
certainly peruse that (both REST and SOAP) for inspiration (if you need any). See DEMO Application.

One way to see an invocation of the WS 'out in the open' is via a cURL call. Following is a Windows .bat file
that uses cURL to invoke the WS, i.e. to execute a job. The point here is not .bat files or cURL but just
showing one, nothing up our sleeves, way to execute a job.

The meat of the .bat file is as follows

set input=%~1
set server=myws.example.com
set port=8443
curl -X POST -u %myDOWSCreds% -k ^
 https://%server%:%port%/DORest/1.3/jobs ^
 -F input=@"%input%" ^
 -F options="a relevant option string" ^
 -D wsHeaders.txt ^

Web Services | Processing Details

page 669

 -o wsOutput.pdf

The presumption in this .bat file snippet is that you have put your DO WS credentials into an environment
variable named myDOWSCreds. That would be in the format userId:password. There are other ways to
specify your credentials. Use whichever method you like but you do have to give the WS useful credentials.

Of course, you need to know the name of the server where the WS has been installed.

The port is something you need to get from the installer. They could easily have configured the ports that
Tomcat is using. By default, port 80 is used for http: access and port 443 is used for https: access. By some
long ago programmer's whim, the non-standard port numbers 8080, and 8443 often appear in use. ...Ask
the installer.

The ‐k option is a synonym for ‐‐insecure. That option has been shown since during initial "playing" it is
not uncommon for the server to be protected by a mere self‐signed certificate. Not recommended, but out-
of-our-scope, and we don't want you to endure hassles when you are just getting started. Security is
something you need to be aware of and have professionally addressed.

The -D wsHeaders.txt is not mandatory, but in the interests of illustration, it's nice to see what headers
come back.

The -o wsOutput.pdf (note the small o) is needed to receive the primary response result. The explicit .pdf
extension is a bit optimistic since some failure could have occurred along the way and it may not be a .pdf
that comes back. You should be checking the headers that come back before ass-u-ming.

If it applied, you could also supply a -F scriptName="someCustomPredeployed.wjs"

Web Services | Prerequisites

page 670

Prerequisites
Web services operate using a client - server concept.

The client machine is any machine; it does not have any particular prerequisites other than to be able to
invoke a web service. curl is handy for that.

The server machine is where DocOrigin and DocOrigin Web Services are. It is this server machine that we
are referring to in the following prerequisites discussion.

The DocOrigin web services run under the JVM (Java Virtual Machine). You need to prepare your DocOrigin
server environment to support its operation. You may have these facilities already, but if not, you would
need to:

 Install Java SE 8.

You need only the JRE (Java Runtime Environment), not the full JDK (Java Development Kit). If/When Java is
installed you should be able to run java -version to see/verify which version you have. You should see
something like:

java version "1.8.0_261"
Java(TM) SE Runtime Environment (build 1.8.0_261-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.261-b12, mixed mode)

 Install Apache Tomcat 7 or above.

Please note where your Tomcat installation is located.

In a typical Windows, XAMPP-based install, tomcat is at C:\xampp\tomcat

In a typical Windows-based independent tomcat install, tomcat is at C:\Program Files (x86)\Apache
Software Foundation\Tomcat 7.0

Elsewhere, we refer to the tomcat install location as [tomcat]. That location will have child folders named:
bin, conf, and webapps (among others).

To see/verify which version of Tomcat you have, run:

[tomcat]\bin\version.bat on Windows

[tomcat]/bin/version.sh on Linux

 Set environment variable DO_ROOT.

On Windows, this is set automatically by the DocOrigin install.

STEP 1

Warning! Java SE 11 and newer are not supported.

STEP 2

Warning! Tomcat 10 requires the special deployment of .war files. See Deployment.

STEP 3

Web Services | Prerequisites

page 671

On Linux, you can set it for Tomcat by adding export DO_ROOT=/var/DocOrigin/ to the [tomcat]/bin/
setenv.sh file and then restart Tomcat. If setenv.sh is not there, don't despair, just create it with that one
export... line.

Don't include the quotes in the export command. Use the path which points to your DocOrigin
installation.

Web Services | Deployment

page 672

1.
2.
3.

Deployment

Tomcat
In order to use Tomcat's Manager app to deploy .war files, you need to have configured a Tomcat user with
the manager-gui role. If you don't have such a Tomcat user already, then add these lines to the [tomcat]/
conf/tomcat-users.xml file in the section

Note, you can (and should!) change the username and password:

<role rolename="manager-gui"/>
<user username="admin" password="admin" roles="manager-gui" />

Alternatively .war files can be placed in the [tomcat]/webapps directory and Tomcat will automatically pick
up and deploy them.

The DocOrigin web services distribution package is a zip file named based on its release version. It consists
of three parts:

Servers, which are two WAR files for the REST and SOAP services.
Client examples, which are two Java applications using REST and SOAP, with sources.
Offline documentation.

DocOrigin web services require users with the do-rest-user role (for using REST) and/or the do-soap-user
role (for using SOAP). These roles need to be configured on the server. The roles can be assigned to either
new users or any existing users.

To define a user who can make both soap and rest requests to DocOrigin web services, add the following
lines to the <tomcat-users> section of the [tomcat]/conf/tomcat-users.xml file.

Note that you should use username and password of your choice.

<role rolename="do-rest-user"/>
<role rolename="do-soap-user"/>
<user username="user" password="pass" roles="do-rest-user,do-soap-user"/>

In production, it's recommended to configure your application server to use https for all connections. For
configuration details see the reference documentation for your application server.

Warning! At the moment DocOrigin web services don't support web deployment on Tomcat 10
so .war files should be placed in the [tomcat]/webapps-javaee directory and Tomcat will
automatically convert and copy them to the webapps directory.

Web Services | Deployment

page 673

REST
To install the DocOrigin REST web service, deploy the server/rest/DORest.war file from the distribution
package zip. You can either merely copy it to [tomcat]/webapps or you can use the Tomcat web-based
manager application available at http(s)://[host:port]/manager/html

By default, the REST service will be available using the URL: http(s)://[host:port]/DORest/1.3

SOAP
To install the DocOrigin SOAP web service, deploy the server/soap/DOSoap.war file from the distribution
package zip. You can either merely copy it to [tomcat]/webapps or use the Tomcat web-based manager
application available at http(s)://[host:port]/manager/html

By default, the SOAP service will be available using the URL: http(s)://[host:port]/DOSoap/1.3

Web Services | Configuration

page 674

•
•
•
•
•

•

Configuration
Copy the following files from the Web Service package's server/resources

Default-WsRun.wjs Default-DocOriginWS.ini Default-WsSecurity.ini Default-WsSecurity.wjs

to

%DO_ROOT%/DO/Bin.

The WsRun script can be overridden at %DO_ROOT%/User/Overrides/WsRun.wjs file.

The Default-DocOriginWS.ini file can be overridden with %DO_ROOT%/User/Overrides/DocOriginWS.ini.

Note, when editing the .ini file you cannot use the usual $X style folder mappings.

The .ini file can define the following properties:

TempPath root folder to store jobs, defaults to C:\DocOrigin\User\Temp\
Input file name where input is stored in job's folder defaults to input
JobInfo file name of communication file, stored in job's folder, defaults to jobInfo.properties
RunTimeoutSec timeout for sync jobs, job is killed after timeout, defaults to 60
KeepJobHours approximate time to keep finished jobs folders on file system, those are cleared automatically,
defaults to 1
LogFileName The name of the log file in job folder, defaults to DOWebService.log

Adjust files if necessary.

Web Services | Logging

page 675

Logging
It may happen that you want more or fewer logs produced during web service work. It is configurable.

In order to change the log settings of a deployed app you can edit the [tomcat]\webapps\[DORest or
DOSoap]\WEB-INF\classes\logback.xml file and restart the app. Available logging levels are TRACE,
DEBUG, INFO, WARN, ERROR, ALL, or OFF.

For more info, see https://logback.qos.ch/manual/configuration.html

You will be able to see web service logs in stdout files, like [tomcat]\logs\tomcat7-
stdout.2019-06-06.log

Note, logback.xml will be overridden after you redeploy the web service. So it may be a good idea
to keep its copy in a safe place if you reconfigured it.

https://logback.qos.ch/manual/configuration.html

Web Services | Script security

page 676

Script security

As of version 1.3.1, you can restrict which scripts can be run by each specific Tomcat user.

Security is controlled by the $E/Default-WsSecurity.ini and $E/Default-WsSecurity.wjs files and their
usual overrides. On each web service call the WsSecurity.wjs file reads the WsSecurity.ini file and makes the
decision of whether to allow or deny access.

By default, all scripts are allowed.

You can add restrictions by putting the WsSecurity.ini file into the $U/Overrides folder and adding lines
identifying script names and allowed user names. See the examples in $E/Default-WsSecurity.ini.

If the script decides that access is denied, the http response headers provided by the web service will
contain a non-zero do.exitCode and the do.property.message will be "access denied".

More advanced requirements may require overriding $E/Default-WsSecurity.wjs with your own script and
implementing security in any preferred way.

Note, as of version 1.3.5 security is disabled by default.
 See [Default-]DocOriginWs.ini and cmdDefault.

Web Services | DEMO Application

page 677

DEMO Application
You can find reference implementations for DocOrigin WS REST and SOAP clients under the client/rest
and client/soap folders of the distribution package.

Collateral is provided to build them with Maven but of course, you need Maven to be installed to build it
using Maven. Alternatively, you can import pom.xml into the Java IDE of your choice.

REST
The REST client reference implementation is located in client/rest/restClient.

It's a Maven project with all the configured dependencies that you need to do REST calls, plus it contains an
example call to run a WS job.

To build and package the app from the command line, execute mvn package in the client/rest/
restClient folder (the one with the pom.xml file in it).

After the build completes, in the target folder, you'll find two jars: restClient.jar - which is just the client
alone, and restClientWithDependencies.jar - which is a runnable uberjar with the client app and all its
dependencies.

You can experiment with it by running it via the command line using the supplied testRest.bat file. It will
read the testRest.properties file at runtime and execute the REST request. Be sure to adjust the
testRest.properties file to match your configuration.

SOAP
The SOAP client reference implementation is located in client/soap/soapClient.

It's a Maven project with all the configured dependencies that you need to do SOAP calls and Web Services
Description Language (WSDL) for the java generation step, plus an example call to run a WS job.

To build and package the app from the command line, execute mvn package in the client/soap/
soapClient folder (the one with the pom.xml file in it).

Once the build is complete, in the target folder you'll find two jars: soapClient.jar - with just the client
alone, and soapClientWithDependencies.jar - a runnable uberjar with the client app and all its
dependencies.

You can experiment with it by running it via the command line using the supplied testSoap.bat file. It will
read the testSoap.properties file at runtime (be sure to adjust those properties to match your
configuration) and execute the SOAP request.

Test
To test the default installation, copy Sample_Invoice.xml from %DO_ROOT%/DO/Samples to the folder where
testSoap.bat is located. After a successful run, you'll notice a newly generated PDF in that same folder.

	Using DocOrigin
	Documentation
	Getting Started
	Proof-of-Life
	Your first DocOrigin form design
	Preview your design
	Terminology: Panes & Containers
	Scraping data off of reports

	License Keys
	Evaluation Spoiler Stripe
	License Key File
	Time-Limited Evaluation License
	Permanent License
	Maintenance and Support
	Product Release Issue Date
	No Need for New Keys Unless Upgrading
	Temporary Emergency Keys
	Keep M&S Up-to-Date

	Multiple Outputs
	One Output per Run
	One Output Per Document
	Different Output Formats
	Multiple Outputs per Doc
	Multiple Outputs per Doc 2
	Usage
	Output Configuration Names
	Deprecated Config file confabulation

	Sending Mail
	The Email From Address
	The Email Subject
	The Email Attachment(s)
	The Email's Text-based Body
	The Email's HTML-based Body
	Images in the Email HTML body
	Summary
	Debugging
	Email Sending Verification
	Email Configuration

	rtf Support
	Limitations
	Importing Rich Text Files

	Barcodes

	Overview
	Platforms
	Minimum Configuration Recommendation
	Merge Architecture
	A Classic Merge Command Line

	FolderMonitor Architecture
	Copyright Notices
	Internationalization
	Definitions
	Considerations

	Configuration Editor
	Configuration files
	More Dynamic Configuration

	User Interface
	The ConfigEditor Main Window
	Typeface Substitutions
	Advanced Properties
	.prt Override

	Design
	Design Tutorial
	Form Files
	File-Print
	Form File Import/Conversion
	Import Prerequisites
	Batch Conversion
	Conversion Effort Estimates

	Fragments
	Libraries
	Adding Fragments
	Fragment Resolution
	Fragments in Merge

	Design Images
	PDF Page as an Image
	Image as Template

	Object Tags
	Standard Tags
	AutoEmail Message Text
	Barcode Overrides
	ellipsis
	HTML Images as URL References
	PDF tags
	RadioButton and CheckBox Options
	Direct Data Binding
	RetainWhenBlank Tag

	Design Keyboard Shortcuts
	Alt+Ctrl+N - Looking at the XML for an Individual Object
	Ctrl+Shift+E - Save Image
	Alt+X - Convert HEX Value to Unicode Symbol
	Ctrl+G - Manage Object Tags
	ALT - Reuse Previous Object Tool
	ESC - Toggle Between Text and Object Edit
	Ctrl+Shift+A - Select All Objects in Pane
	F5, F7, F8 - Preview
	Ctrl - Line on a Diagonal

	Data Explorer Options
	Open Data File...
	Change Document Separator Tag...
	Select in Form
	Allow for Dragging Tables
	Copy Data Path To Clipboard

	Form Explorer Options
	Table
	Link Objects into Pane
	Expand All Panes
	Collapse All Panes
	Expand Children
	Collapse Children
	Copy Form Path To Clipboard
	TagAs

	FilterEditor
	Subject Matter Expertise
	Learning FE
	Beginner's Tip
	Sample XML File
	Show those Menu Items
	Filter Editor - 101
	How does it work
	Defining a Rule
	Defining an Extraction
	Review
	Rule order
	States
	The *Start* state
	The *AnyState* state
	The current line
	Extractions
	Variable Length Extractions
	Moving on
	Filling in the XML
	Non-extraction Actions
	Start New Document
	Extraction Steps
	The Lexicon
	Sentinel detection
	Ways into a State

	FilterEditor JavaScript
	Custom Functions
	Now that you have defined your custom function, how do you use it?
	What if you want to edit your script?
	FilterEditor Functions

	FolderMonitor
	FM on Windows...
	FM on Unix...
	FolderMonitor Command Options
	-concurrent
	-errorFolder
	-ExitNow
	-ExitWhen
	-FMScript
	-JPSName
	-pause
	-processedFolder
	-quarantineTime
	-queue
	-script
	-scriptFolder
	-UpdateCounts

	Functional Overview
	Multiple Monitors
	On unix...
	On Windows...
	FM.ini
	FMTransaction

	Installation
	Testing a new install

	Queues
	_job Script Object
	Command Line Option Access
	Processing Instruction Access

	Job Name Discovery
	The DocOrigin PI
	Direct-to-Merge PI

	Processing the Job
	Sample Processing Script:

	Error Handling
	Quarantined Files

	Merge
	Merge Command Options
	-appendPages
	-attachment
	-blend
	-config
	-createData
	-data
	-documentTag
	-dumpLevel
	-dumpPath
	-dumpTimes
	-duplex
	-ellipsis
	-embeddedDefault
	-embedjpg
	-embedPlainTextAsRtf
	-emptyNodeInstantiatePane
	-filter
	-filterOutput
	-filterParm
	-form
	-fragmentAutoResolve
	-HighlightURL
	-htmTemplate
	-imagePath
	-inputDataType
	-inputDateFormat
	-inputTray
	-language
	-lineBreak
	-lj4BoundFont
	-mergeCaseSensitive
	-mode
	-numCopies
	-output
	-outputBin
	-paginate
	-paperType
	-pdfCompress
	-pdfScript
	-preferImages
	-printInDocumentOrder
	-prt option
	-rtfParserVersion
	-scriptFile
	-scriptFolder (Merge Command Options)
	-scriptTools
	-showNames
	-splitSegs
	-spoolerDocName
	-stretchFields
	-symbolSet
	-testMail
	-textpresentation
	-translate
	-trimData
	-useBuiltinSS
	-useFilterFormList
	-wininfo

	The Merge Algorithm
	XML Data Files
	XML Includes
	XML Attributes
	Image data
	PDF Page Images

	JSON Data Files
	Combine the Form and Data
	Field Name Matching
	Barcode Options
	2D Barcodes
	AusPost Barcode
	Barcode Bar Widths
	Code 11
	Code 25
	Code 39
	Code 128
	DataMatrix
	EAN-13
	Linear Barcodes
	MaxiCode
	PDF417
	Pharmacode
	Pharmacode 2Track
	PostNet
	QR Code
	UPC
	USPS-IM

	Zebra Internal Barcodes
	Properties by Barcode Type

	Auto Translate
	A Translate Example
	Setting Field Values

	Auto Email
	How it Works
	Adding Auto Email to a Form
	Designing DocOrigin Emails
	Images in Emails
	Testing Your HTML Email
	Beacons
	Just the HTML Please

	Global Fields
	Auto/Embedded Fields
	Merge Licensing Info
	Merge Version
	License Key Renewal

	Merge Output
	The Basics
	Downloaded / Resident Fonts
	Output Filenames / Options
	Scripted Output Destinations
	Multiple Output Streams
	Output to Another Program

	Merge Filters
	Filter options
	Standalone usage
	Executable (non-script) filters
	ConvertDatToXml Filter
	ConvertTxtToXml Filter
	Dat2XML Filter
	DocumentSort
	JavaScript Filters
	DatToXml Filter (Script-based)
	CsvToXml Filter (Script-based)
	XMLAttrs Filter (script-based)
	Codepage Handling
	Multiple filters per run

	Merge External PDFs
	What do you do to achieve external PDF integration?
	What Merge does
	The DocOriginOverlay.wjs script
	Multiple documents per Merge run

	Merge Scripting
	Suggested Scripting Guidelines

	Merge Events
	Hyperlinks
	Fillable Forms
	Single Output File
	Templates
	HTML Script
	Input Fields
	Input Field Type
	Fillable HTML Forms
	Fillable PDF Forms

	Pagination
	Pagination Checkboxes
	Mandatory
	Allow Multiple
	Allow Split
	Allow Break Before
	Allow Break After
	Allow Break Between
	Force Page
	Layout in multiple columns
	Minimum Height
	Pagination Generalities
	Footers/Headers

	Processing Instructions
	Profile Files
	Profile File Format
	Opening a Profile File
	[@Variant]

	Transparent Color Image Support

	MultiMerge
	Html-Adaptive Processing
	Html-Adaptive Template Files
	MultiPart Output
	MultiMerge Command Options
	-action
	-adaptiveTemplate
	-mergeargs

	MultiPage
	Usage
	MultiPage Command Options

	Notify
	Purpose/Uses
	Infrastructure
	Configuring
	Command Options - Notify
	-context (Notify Command Option)
	-fileMask (Notify Command Option)
	-themeColor (Notify Command Option)
	-waitTime (Notify Command Option)

	PCLExtract
	Extracting Documents from a PCL
	Other options

	PDFExtract
	Combined PDFs
	Combining PDFs using PDFExtract
	Extracting Documents from a PDF
	Extracting Pages from a PDF
	Selection by Bookmark
	View Bookmarks
	Command Options (PDFExtract)
	-attach
	-docs
	-dumpIndex
	-dumpObjects
	-in
	-multiSelect
	-onto
	-out
	-overlay
	-pageCount
	-pages
	-quiet

	RunScript
	Syntax
	Parameters
	Predefined Vars
	Command Options (RunScript)
	-allowDJScript
	Runscript -script

	FormConvert
	Command Options (FormConvert)
	-adjustLabelWidth
	-config (FormConvert)
	-containerShift
	-fieldCorrection
	-ics
	-importFilter
	-in (FormConvert)
	-out (FormConvert)
	-retainSpaces
	-saveXdp
	-setConfig
	-target

	SendMail
	SendMail Configuration
	Immediate or Queued
	Creating but not Sending and Email (-hold)
	Post-Send Housekeeping
	Parallel Connections
	Option List
	Immediate or Queued
	Creating but not Sending and Email (-hold)
	Post-Send Housekeeping
	Parallel Connections
	Option List

	Sendmail Verification
	Signing and Encrypting mail
	Email on Linux
	Updating cURL via yum

	Session - DocOrigin Inter-process Communication
	Session File Format
	Script access to Session data
	Merge Command Line Options

	Command Line Processing
	Indirect Parameter Files (.prm files)
	Conditional prm files
	Text Substitution

	Default Parameter files
	Order of Precedence
	Invoking Command Line Apps
	.prm Files
	Convenience Invocation
	... On Windows
	... On Linux
	Invoking RunScript

	Common Command Line Options
	-alert
	Syntax
	Description

	-alertLevel
	Syntax
	Description

	-alertMsg
	Syntax
	Description

	-alertSubject
	Syntax
	Description

	-alertTo
	Syntax
	Description

	-cache
	Syntax
	Description

	-cd
	Syntax
	Description

	-clearLog
	Syntax
	Description

	-debug
	Description

	-fileMask
	Syntax
	Description

	-include
	Syntax
	Description

	-locale
	Syntax
	Description

	-logfile
	Syntax
	Description
	Emergency log file

	-logfileFormat
	Syntax
	Description

	-logSeverity
	Syntax
	Description

	-message
	Syntax
	Description

	-monitor
	Syntax
	Description

	-phase
	Syntax
	Description

	-setSession
	Syntax
	Description

	-themeColor
	Syntax
	Description

	-trace
	Syntax
	Description

	-tracelevel
	Syntax
	Description
	Example

	-verbose
	Syntax
	Description

	-$X
	Syntax
	Description

	Scripting
	Script Functions
	Script Files
	The Merge DOM
	$Variables
	Further, you can count on:
	As of 3.0.001.11...

	_metaData
	How to get metadata

	Script Functions
	Naming Conventions
	_auto - automatic field values
	_cache - scripting object
	_chart - draw barcharts and piecharts
	_data - Merge XML Data DOM
	_document
	_file - read/write files
	_fromBase64
	_fromDOUnits
	_fromXmlString
	_inlineToRtf
	_job
	_locale
	_logf
	_logfEx
	_merge
	_mergeEmbedded
	_message
	_odbc - database access
	_os
	_page
	_parser
	_printer - output configuration settings
	_printf
	_profile
	_prompt
	_resolve
	_run
	_runNoWait
	_runScript
	_sendmail
	_session - Accessing Session Data
	_sprintf
	_summary
	_system
	_toBase64
	_toDOUnits
	_toXmlString
	_tracef
	_xml
	XmlFile Class
	XmlInput Class
	XMLHttpRequest - send/receive html pages

	DOM Functions
	domObj.ancestor
	domObj.appendInstance
	domObj.childNamed
	domObj.bookmark
	domObj.clone
	domObj.deleteObject
	domObj.descendant
	domObj.DOM
	domObj.DOMValue
	domObj.fillFromNextPage
	domObj.fillObject
	domObj.getAllTags
	domObj.getObjectsByName
	domObj.getObjectsByTag
	domObj.getObjectsByTagValue
	domObj.getObjectsByType
	domObj.getPickedObjects
	domObj.insertPage
	domObj.relayout
	domObj.reparent
	domObj.setTag
	domObj.getTag
	domObj.sum
	domObj.xhtmlToRtf

	DOM Properties Accessing the Document Structures
	Examples

	Debugging Script
	Techniques

	Colors
	Setting Colors
	Pre-defined Colors

	Script Units

	Overrides
	Custom Design Script Menu

	File Naming Conventions
	Characters Restricted from File Names
	% Placeholders in File Names
	Folder Monitor Instance Name Substitution

	$X String Substitutions
	Paths.prm
	Test.prm
	External file include
	Startup $'s
	Special $'s
	$$F
	$$D
	$$X

	Glossary
	Acronyms

	Return Codes
	Filter program return codes
	DocOriginSendMailServer return codes
	Merge return codes
	PDFExtract return codes
	Folder Monitor return codes
	Process spawning return codes
	Scripting return codes
	XFilter return codes
	Reserved for unix
	User return codes
	Return codes on Unix

	Latest ReadMe
	Web Services
	Processing Details
	REST API
	SOAP API
	Job Internals
	Returned Results
	Limitations
	The Default Script
	Direct Merge call
	Calling The WS

	Prerequisites
	Deployment
	REST
	SOAP

	Configuration
	Logging
	Script security
	DEMO Application
	REST
	SOAP
	Test

